K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 5

Lời giải:
a.

Khi $m=1$ thì PT trở thành:
$x^2-4x+4=0$

$\Leftrightarrow (x-2)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2$
b.

Để PT có 2 nghiệm pb $x_1,x_2$ thì:

$\Delta'=(m+1)^2-(m^2-2m+5)>0$

$\Leftrightarrow m>1$
Áp dụng định lý Viet:

$x_1+x_2=2(m+1)$

$x_1x_2=m^2-2m+5$

Với $m>1$ thì $x_1+x_2=2(m+1)>0; x_1x_2=m^2-2m+5>0$

$\Rightarrow x_1>0; x_2>0$
Khi đó:

$\sqrt{4x_1^2+4mx_1+m^2}+\sqrt{x_2^2+4mx_2+4m^2}=7m+2$

$\Leftrightarrow \sqrt{(2x_1+m)^2}+\sqrt{(x_2+2m)^2}=7m+2$

$\Leftrightarrow |2x_1+m|+|x_2+2m|=7m+2$

$\Leftrightarrow 2x_1+m+x_2+2m=7m+2$

$\Leftrightarrow x_1+(x_1+x_2)=4m+2$

$\Leftrightarrow x_1+2m+2=4m+2$

$\Leftrightarrow x_1=2m$

$x_2=2(m+1)-x_1=2$
$m^2-2m+5=x_1x_2=2m.2=4m$

$\Leftrightarrow m^2-6m+5=0$

$\Leftrightarrow (m-1)(m-5)=0$

Do $m>1$ nên $m=5$

21 tháng 5

Lời giải:
a.

Khi 𝑚=1 thì PT trở thành:
𝑥2−4𝑥+4=0

⇔(𝑥−2)2=0⇔𝑥−2=0⇔𝑥=2
b.

Để PT có 2 nghiệm pb 𝑥1,𝑥2 thì:

Δ′=(𝑚+1)2−(𝑚2−2𝑚+5)>0

⇔𝑚>1
Áp dụng định lý Viet:

𝑥1+𝑥2=2(𝑚+1)

𝑥1𝑥2=𝑚2−2𝑚+5

Với 𝑚>1 thì 𝑥1+𝑥2=2(𝑚+1)>0;𝑥1𝑥2=𝑚2−2𝑚+5>0

⇒𝑥1>0;𝑥2>0
Khi đó:

4𝑥12+4𝑚𝑥1+𝑚2+𝑥22+4𝑚𝑥2+4𝑚2=7𝑚+2

⇔(2𝑥1+𝑚)2+(𝑥2+2𝑚)2=7𝑚+2

⇔∣2𝑥1+𝑚∣+∣𝑥2+2𝑚∣=7𝑚+2

⇔2𝑥1+𝑚+𝑥2+2𝑚=7𝑚+2

⇔𝑥1+(𝑥1+𝑥2)=4𝑚+2

⇔𝑥1+2𝑚+2=4𝑚+2

⇔𝑥1=2𝑚

𝑥2=2(𝑚+1)−𝑥1=2
𝑚2−2𝑚+5=𝑥1𝑥2=2𝑚.2=4𝑚

⇔𝑚2−6𝑚+5=0

⇔(𝑚−1)(𝑚−5)=0

Do 𝑚>1 nên 𝑚=5

17 tháng 9 2021

Gọi tam giác ABC vuông tại A, trung tuyến AM, đường cao AH

\(\Rightarrow AM=5\left(cm\right);AH=4\left(cm\right)\)

Ta có AM là trung tuyến ứng với cạnh huyền BC

\(\Rightarrow BC=2AM=10\left(cm\right)\)

Áp dụng HTL tam giác \(AH\cdot BC=AB\cdot AC\Rightarrow AB\cdot AC=40\Rightarrow AB=\dfrac{40}{AC}\\ \dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{16}=\dfrac{1}{\dfrac{1600}{AC^2}}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{AC^4+1600}{1600AC^2}=\dfrac{100AC^2}{1600AC^2}\Rightarrow AC^4-100AC^2+1600=0\\ \Rightarrow\left(AC^2-80\right)\left(AC^2-20\right)=0\\ \Rightarrow\left[{}\begin{matrix}AC^2=80\\AC^2=20\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}AC=4\sqrt{5}\left(AC>0\right)\\AC=2\sqrt{5}\left(AC>0\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}AB=2\sqrt{5}\\AB=4\sqrt{5}\end{matrix}\right.\)

Vậy với AB là cạnh góc vuông lớn thì \(\left(AB;AC;BC\right)=\left(4\sqrt{5};2\sqrt{5};10\right)\)

 

17 tháng 9 2021

Em cần cả hình vẽ lẫn lời giải luôn nha :3

loading...  loading...  

Câu 1: 

Gọi chiều rộng là x

Chiều dài là x+20

Theo đề, ta có: 2(x+x+20)=104

=>2x+20=52

=>2x=32

hay x=16

Vậy: Diện tích của miếng đất là 16x36=576(m2)

28 tháng 2 2022

Xin lỗi nhưng e cần bài này dạng Giải bài bằng cách lập hệ phương trình ạ

NV
19 tháng 9 2021

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|=0\)

Do \(\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1>0\) với mọi x thuộc TXĐ

\(\Rightarrow\) Phương trình đã cho vô nghiệm