Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tam giác ABC vuông tại A, trung tuyến AM, đường cao AH
\(\Rightarrow AM=5\left(cm\right);AH=4\left(cm\right)\)
Ta có AM là trung tuyến ứng với cạnh huyền BC
\(\Rightarrow BC=2AM=10\left(cm\right)\)
Áp dụng HTL tam giác \(AH\cdot BC=AB\cdot AC\Rightarrow AB\cdot AC=40\Rightarrow AB=\dfrac{40}{AC}\\ \dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{16}=\dfrac{1}{\dfrac{1600}{AC^2}}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{AC^4+1600}{1600AC^2}=\dfrac{100AC^2}{1600AC^2}\Rightarrow AC^4-100AC^2+1600=0\\ \Rightarrow\left(AC^2-80\right)\left(AC^2-20\right)=0\\ \Rightarrow\left[{}\begin{matrix}AC^2=80\\AC^2=20\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}AC=4\sqrt{5}\left(AC>0\right)\\AC=2\sqrt{5}\left(AC>0\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}AB=2\sqrt{5}\\AB=4\sqrt{5}\end{matrix}\right.\)
Vậy với AB là cạnh góc vuông lớn thì \(\left(AB;AC;BC\right)=\left(4\sqrt{5};2\sqrt{5};10\right)\)
Câu 1:
Gọi chiều rộng là x
Chiều dài là x+20
Theo đề, ta có: 2(x+x+20)=104
=>2x+20=52
=>2x=32
hay x=16
Vậy: Diện tích của miếng đất là 16x36=576(m2)
Xin lỗi nhưng e cần bài này dạng Giải bài bằng cách lập hệ phương trình ạ
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|=0\)
Do \(\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1>0\) với mọi x thuộc TXĐ
\(\Rightarrow\) Phương trình đã cho vô nghiệm
Lời giải:
a.
Khi $m=1$ thì PT trở thành:
$x^2-4x+4=0$
$\Leftrightarrow (x-2)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2$
b.
Để PT có 2 nghiệm pb $x_1,x_2$ thì:
$\Delta'=(m+1)^2-(m^2-2m+5)>0$
$\Leftrightarrow m>1$
Áp dụng định lý Viet:
$x_1+x_2=2(m+1)$
$x_1x_2=m^2-2m+5$
Với $m>1$ thì $x_1+x_2=2(m+1)>0; x_1x_2=m^2-2m+5>0$
$\Rightarrow x_1>0; x_2>0$
Khi đó:
$\sqrt{4x_1^2+4mx_1+m^2}+\sqrt{x_2^2+4mx_2+4m^2}=7m+2$
$\Leftrightarrow \sqrt{(2x_1+m)^2}+\sqrt{(x_2+2m)^2}=7m+2$
$\Leftrightarrow |2x_1+m|+|x_2+2m|=7m+2$
$\Leftrightarrow 2x_1+m+x_2+2m=7m+2$
$\Leftrightarrow x_1+(x_1+x_2)=4m+2$
$\Leftrightarrow x_1+2m+2=4m+2$
$\Leftrightarrow x_1=2m$
$x_2=2(m+1)-x_1=2$
$m^2-2m+5=x_1x_2=2m.2=4m$
$\Leftrightarrow m^2-6m+5=0$
$\Leftrightarrow (m-1)(m-5)=0$
Do $m>1$ nên $m=5$
Lời giải:
a.
Khi 𝑚=1m=1 thì PT trở thành:
𝑥2−4𝑥+4=0x2−4x+4=0
⇔(𝑥−2)2=0⇔𝑥−2=0⇔𝑥=2⇔(x−2)2=0⇔x−2=0⇔x=2
b.
Để PT có 2 nghiệm pb 𝑥1,𝑥2x1,x2 thì:
Δ′=(𝑚+1)2−(𝑚2−2𝑚+5)>0Δ′=(m+1)2−(m2−2m+5)>0
⇔𝑚>1⇔m>1
Áp dụng định lý Viet:
𝑥1+𝑥2=2(𝑚+1)x1+x2=2(m+1)
𝑥1𝑥2=𝑚2−2𝑚+5x1x2=m2−2m+5
Với 𝑚>1m>1 thì 𝑥1+𝑥2=2(𝑚+1)>0;𝑥1𝑥2=𝑚2−2𝑚+5>0x1+x2=2(m+1)>0;x1x2=m2−2m+5>0
⇒𝑥1>0;𝑥2>0⇒x1>0;x2>0
Khi đó:
4𝑥12+4𝑚𝑥1+𝑚2+𝑥22+4𝑚𝑥2+4𝑚2=7𝑚+24x12+4mx1+m2+x22+4mx2+4m2=7m+2
⇔(2𝑥1+𝑚)2+(𝑥2+2𝑚)2=7𝑚+2⇔(2x1+m)2+(x2+2m)2=7m+2
⇔∣2𝑥1+𝑚∣+∣𝑥2+2𝑚∣=7𝑚+2⇔∣2x1+m∣+∣x2+2m∣=7m+2
⇔2𝑥1+𝑚+𝑥2+2𝑚=7𝑚+2⇔2x1+m+x2+2m=7m+2
⇔𝑥1+(𝑥1+𝑥2)=4𝑚+2⇔x1+(x1+x2)=4m+2
⇔𝑥1+2𝑚+2=4𝑚+2⇔x1+2m+2=4m+2
⇔𝑥1=2𝑚⇔x1=2m
𝑥2=2(𝑚+1)−𝑥1=2x2=2(m+1)−x1=2
𝑚2−2𝑚+5=𝑥1𝑥2=2𝑚.2=4𝑚m2−2m+5=x1x2=2m.2=4m
⇔𝑚2−6𝑚+5=0⇔m2−6m+5=0
⇔(𝑚−1)(𝑚−5)=0⇔(m−1)(m−5)=0
Do 𝑚>1m>1 nên 𝑚=5m=5