K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4

Giúp mình với ạ

Gọi    là số cần lập, các chữ số đôi một khác nhau .

Vì x là số lẻ nên d có 3 cách chọn.

Với mỗi cách chọn d ta có a  A \ {0;d} nên a có 5 cách chọn

Với mỗi cách chọn a;d ta có    cách chọn bc

Theo quy tắc nhân ta có:  số thỏa yêu cầu bài toán

8 tháng 2 2023

a) Ta đặt mẫu chung là: abcd (a khác 0)

- Có 9 cách chọn a

- Có 9 cách chọn b

- Có 8 cách chọn c

- Có 7 cách chọn d

Ta lập được là: 9 x 9 x 8 x 7 = 4536 (số)

b) Ta đặt mẫu chung là: abcd

- Có 5 cách chọn a

- Có 4 cách chọn b

- Có 3 cách chọn c

- Có 2 cách chọn d

Ta lập được là: 5 x 4 x 3 x 2 = 120 (số)

c) Ta lập dãy số: 1000; 1005; 1010;...; 9995

Quy luật: Mỗi số hạng liên tiếp liền kề sẽ cách nhau 5 đơn vị

Áp dụng công thức dãy số cách đều, ta có số số hạng là:

(9995 - 1000) : 5 + 1 = 1800 (số)

d) Ta đặt mẫu chung là: abcd (d = 0 hoạc 5)

Trường hợp d = 0

- Có 9 cách chọn a

- Có 8 cách chọn b

- Có 7 cách chọn c

Trong trường hợp này, ta lập được là: 9 x 8 x 7 = 504 (số)

Trường hợp d = 5

- Có 8 cách chọn a

- Có 8 cách chọn b

- Có 7 cách chọn c

Trong trường hợp này, ta lập được là: 8 x 8 x 7 = 448 (số)

Ta lập được là: 504 + 448 = 952 (số)

Đ/S

HT

a: \(\overline{abcd}\)

a có 7 cách chọn

b có 6 cách

c có 5 cách

d có 4 cách

=>Có 7*6*5*4=840 cách

b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)

Mỗi bộ có 3!=6(cách)

=>Có 6*3=18 cách

c: \(\overline{abcde}\)

e có 3 cách

a có 6 cách

b có 5 cách

c có 4 cách

d có 3 cách

=>Có 3*6*5*4*3=1080 cách

Chia A thành 3 tập hợp:

B={1;4;7}; C={2;5;8}; D={0;3;6}

TH1: 2 số trong B, 2 số trong C

=>Có \(C^2_3\cdot C^2_3\cdot4!=216\left(cách\right)\)

TH2: 1 số trong B, 1 số trong C, số 0 và 1 số trong D

=>Có 3*3*1*2*3*3*2*1=324 cách

TH3: 1 số trong B, 1 số trong C, 2 số khác 0 trong D

=>Có 3*3*1*4!=216 cách

TH4: 3 số trong B, số 0

=>Có 3*3*2*1=18 cách

TH5: 3 số trong B, 1 số khác 0 trong D

=>Có 2*4!=24*2=48 cách

TH6: 3 số trong C, số 0

=>Có 3*3*2*1=18 cách

TH7: 3 số trong C, 1 số khác 0 trong D

=>Có 2*4!=48 cách

=>Có 216+324+216+18+48+18+48=888 cách

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Chọn các chữ số hàng trăm, hàng chục, hàng đơn vị trong các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

a) - chữ số hàng trăm có 9 cách (khác 0)

- chữ số hàng chục có 9 cách (khác chữ số hàng trăm)

- chữ số hàng đơn vị có 8 cách (khác chữ số hàng trăm và hàng chục)

Vậy có tất cả 9. 9. 8 = 648 số tự nhiên có 3 chữ số khác nhau.

b) - Chọn chữ số hàng đơn vị có 5 cách 

- Chọn chữ số hàng trăm có 8 cách

- Chọn chữ số hàng chục có 8 cách 

Vậy có tất cả 5. 8. 8 = 320 số lẻ có 3 chữ số khác nhau.

c) - Chọn chữ số hàng đơn vị có 2 cách 

- Chọn chữ số hàng trăm có 9 cách

- Chọn chữ số hàng chục có 10 cách

Vậy có tất cả 2.9.10 = 180 số tự nhiên có 3 chữ số chia hết cho 5.

d) Trường hợp 1: chữ số hàng đơn vị là 0.

- Chọn chữ số hàng trăm có 9 cách 

- Chọn chữ số hàng chục có 8 cách

Trường hợp 2 chữ số hàng đơn vị là 5:

- Chọn chữ số hàng trăm có 8 cách (khác 0 và 5)

- Chọn chữ số hàng chục có 8 cách

Vậy có tất cả 9.8 +8.8 = 136 số tự nhiên có 3 chữ số khác nhau  và chia hết cho 5.

14 tháng 12 2023

TH1: Hàng đơn vị là 0

=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 8 x 7 x 6 x 5 = 1680 (cách)

TH2: Hàng đơn vị là 5

=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 7 x 7 x 6 x 5 = 1470 (cách)

Số lượng số tự nhiên có 5 chữ số được lập bởi các số 0,1,2,3,4,5,6,7,8 và chia hết cho 5 là: 1680 + 1470 = 3150 (số)

Đáp số: 3150 số thoả mãn

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)

b)    Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).

Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:

       8. 3! = 48 (số)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Từ 4 chữ số 0, 1, 2, 3:

- Hàng trăm có 3 cách chọn.

- Hàng chục có 3 cách chọn.

- Hàng đơn vị có 2 cách chọn.

Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.

b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.

Có tất cả 1. 2. 3 = 6 số có thể lập được.

- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.

Có tất cả 1. 2. 2 = 4 số có thể lập được.

Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.

\(\overline{abcde}\)

TH1: e=0

e có 1 cách chọn

Chữ số 2 có 4 cách chọn

ba chỗ còn lại có 4*3*2=24 cách

=>Có 4*24=96 cách

TH2: e=5; a=2

a,e có 1 cach

b có 4 cách

c có 3 cách

dcó 2 cách

=>Có 4*3*2=24 cách

TH3: e=5; a<>2

e có 1 cách chọn

a có 3 cách chon

số 2 có 3 cách

hai số còn lại có 3*2=6 cách

=>Có 3*3*6=54 cách

=>CÓ 96+24+54=174 số