Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có AM là đường trung tuyến ứng với cạnh huyền BC nên AM = MC = 1/2 BC
\(\Rightarrow\Delta AMC\)cân tại M \(\Rightarrow\widehat{MAC}=\widehat{C}\) (1)
Mặt khác: \(\hept{\begin{cases}\widehat{B}+\widehat{C}=90^0\\\widehat{B}+\widehat{BAH}=90^0\end{cases}\Rightarrow\widehat{C}=\widehat{BAH}}\) (2)
Từ (1) và (2), ta được:
\(\widehat{MAC}=\widehat{BAH}\Rightarrow\widehat{MAC}+\widehat{MAH}=\widehat{BAH}+\widehat{MAH}\Rightarrow\widehat{CAH}=\widehat{MAB}\)
Bài 4)
1) Xét ∆ vuông ABC có:
Vì AM trung tuyến BC
=> BM = MC
=> AM = BM = MC ( Trong ∆ vuông đường trung tuyến ứng với cạnh huyền = nửa cạnh huyền)
=> ∆ABM cân tại M
=> ∆MAC cân tại M
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=FE
B A C H M
Mấy bài này cũng easy thôi
a) \(\Delta ABC;\widehat{A}=1v\left(gt\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}\)\(=20\left(cm\right)\)
Tam giác ABC đồng dạng với tam giác HBA ( \(\widehat{B}\)chung \(\widehat{BAC}=\widehat{BAH}=90^0\))
\(\Rightarrow\frac{AB}{BH}=\frac{AC}{AH}=\frac{BC}{AB}\)
hay \(\frac{12}{BH}=\frac{16}{AH}=\frac{20}{12}=\frac{10}{6}\)
\(\Rightarrow AH=\frac{16.6}{10}=9,6\left(cm\right)\)
\(\Rightarrow BH=\frac{12.6}{10}=7,2\left(cm\right)\)
\(\Rightarrow HC=BC-BH=20-7,2=12,8\)( cm )
b) \(\Delta HMA\)vuông tại H
\(\Rightarrow S_{HMA}=\frac{1}{2}HM.AH\)\(=\frac{1}{2}.2,8.9,6=13,44\left(cm^2\right)\)
a: Xét tứ giác ADHP có
AD//HP
AP//HD
góc PAD=90 độ
Do đó: ADHP là hình chữ nhật
=>AH=DP
b: ΔABC vuông tại A có AM là đường trung tuyến
nên MA=1/2BC=MC=MB
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
c: góc QAP+góc QPA
=góc MAC+góc APD
=góc MCA+góc AHD
=góc ACB+góc ABC=90 độ
=>ΔQAP vuông tại Q
bạn tự vẽ hình nka !!!
a) , b) Theo định lí Py - ta - go trong \(\Delta ABC\)vuông tại A , ta có :
\(BC^2=AB^2+AC^2=15^2+20^2=625\)\(\Leftrightarrow BC=\sqrt{625}=25\left(cm\right)\)
Xét \(\Delta AHB\)và \(\Delta CAB\)có :
\(\widehat{ABC}\)chung ; \(\widehat{BHA}=\widehat{BAC}=90\)độ
\(\Leftrightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\)
Ta có tỉ lệ : \(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{15\cdot20}{25}=12\left(cm\right)\)
\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9\left(cm\right)\)
\(\Leftrightarrow CH=BC-BH=25-9=16\left(cm\right)\)
c) ta có : \(AM=\frac{BC}{2}=\frac{25}{2}=12,5\left(cm\right)\) ( do AM là đường trung tuyến ứng với cạnh huyền BC )
Theo định lí Py - ta - go trong \(\Delta AHM\)vuông tại H , ta có :
\(HM^2=AM^2-AH^2=12,5^2-12^2=12,25\)\(\Leftrightarrow HM=\sqrt{12,25}=3,5\left(cm\right)\)
\(\Rightarrow S_{AHM}=\frac{1}{2}\cdot AH\cdot HM=\frac{3,5\cdot12}{2}=\frac{42}{2}=21\left(cm^2\right)\)
TK CKO MK NKA !!!
Ta có:
\(\widehat{BAH}+\widehat{HAC}=90^0\)
Mà \(\widehat{HAC}+\widehat{ACH}=90^0\) ; Mà \(\widehat{HAB}+\widehat{ABH}=90^0\)
=>\(\widehat{BAH}=\widehat{ACH}\)=>\(\widehat{BAH}=\widehat{MCA}\) ; =>\(\widehat{CAH}=\widehat{ABH}\)=>\(\widehat{CAH}=\widehat{MBA}\)
Vậy \(\widehat{BAH}=\widehat{MCA}\); \(\widehat{CAH}=\widehat{MBA}\)