K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

Ta có:

\(\widehat{BAH}+\widehat{HAC}=90^0\)

\(\widehat{HAC}+\widehat{ACH}=90^0\)                                                 ;                    Mà \(\widehat{HAB}+\widehat{ABH}=90^0\)

=>\(\widehat{BAH}=\widehat{ACH}\)=>\(\widehat{BAH}=\widehat{MCA}\)                               ;                   =>\(\widehat{CAH}=\widehat{ABH}\)=>\(\widehat{CAH}=\widehat{MBA}\)

Vậy \(\widehat{BAH}=\widehat{MCA}\)\(\widehat{CAH}=\widehat{MBA}\)    


 

21 tháng 10 2018

Tam giác ABC có AM là đường trung tuyến ứng với cạnh huyền BC nên AM = MC = 1/2 BC

\(\Rightarrow\Delta AMC\)cân tại M \(\Rightarrow\widehat{MAC}=\widehat{C}\) (1)

Mặt khác: \(\hept{\begin{cases}\widehat{B}+\widehat{C}=90^0\\\widehat{B}+\widehat{BAH}=90^0\end{cases}\Rightarrow\widehat{C}=\widehat{BAH}}\) (2)

Từ (1) và (2), ta được:

\(\widehat{MAC}=\widehat{BAH}\Rightarrow\widehat{MAC}+\widehat{MAH}=\widehat{BAH}+\widehat{MAH}\Rightarrow\widehat{CAH}=\widehat{MAB}\)

Bài 4)

1) Xét ∆ vuông ABC có:

Vì AM trung tuyến BC 

=> BM = MC 

=> AM = BM = MC ( Trong ∆ vuông đường trung tuyến ứng với cạnh huyền = nửa cạnh huyền)

=> ∆ABM cân tại M 

=> ∆MAC cân tại M 

12 tháng 11 2021

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=FE

23 tháng 3 2018

B A C H M

Mấy bài này cũng easy thôi

a) \(\Delta ABC;\widehat{A}=1v\left(gt\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}\)\(=20\left(cm\right)\)

Tam giác ABC đồng dạng với tam giác HBA ( \(\widehat{B}\)chung \(\widehat{BAC}=\widehat{BAH}=90^0\))

\(\Rightarrow\frac{AB}{BH}=\frac{AC}{AH}=\frac{BC}{AB}\)

hay \(\frac{12}{BH}=\frac{16}{AH}=\frac{20}{12}=\frac{10}{6}\)

\(\Rightarrow AH=\frac{16.6}{10}=9,6\left(cm\right)\)

\(\Rightarrow BH=\frac{12.6}{10}=7,2\left(cm\right)\)

\(\Rightarrow HC=BC-BH=20-7,2=12,8\)( cm )

b) \(\Delta HMA\)vuông tại H

\(\Rightarrow S_{HMA}=\frac{1}{2}HM.AH\)\(=\frac{1}{2}.2,8.9,6=13,44\left(cm^2\right)\)

a: Xét tứ giác ADHP có

AD//HP

AP//HD

góc PAD=90 độ

Do đó: ADHP là hình chữ nhật

=>AH=DP

b: ΔABC vuông tại A có AM là đường trung tuyến

nên MA=1/2BC=MC=MB

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

c: góc QAP+góc QPA

=góc MAC+góc APD

=góc MCA+góc AHD

=góc ACB+góc ABC=90 độ

=>ΔQAP vuông tại Q

11 tháng 5 2017

bạn tự vẽ hình nka !!!

a) , b) Theo định lí Py - ta - go trong   \(\Delta ABC\)vuông tại A , ta có : 

\(BC^2=AB^2+AC^2=15^2+20^2=625\)\(\Leftrightarrow BC=\sqrt{625}=25\left(cm\right)\)

    Xét \(\Delta AHB\)và   \(\Delta CAB\)có :

\(\widehat{ABC}\)chung     ;        \(\widehat{BHA}=\widehat{BAC}=90\)độ

\(\Leftrightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\)

Ta có tỉ lệ : \(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)

\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{15\cdot20}{25}=12\left(cm\right)\)

\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9\left(cm\right)\)

\(\Leftrightarrow CH=BC-BH=25-9=16\left(cm\right)\)

c) ta có :    \(AM=\frac{BC}{2}=\frac{25}{2}=12,5\left(cm\right)\)   ( do AM là đường trung tuyến ứng với cạnh huyền BC )

  Theo định lí Py - ta - go trong   \(\Delta AHM\)vuông tại H , ta có : 

\(HM^2=AM^2-AH^2=12,5^2-12^2=12,25\)\(\Leftrightarrow HM=\sqrt{12,25}=3,5\left(cm\right)\)

\(\Rightarrow S_{AHM}=\frac{1}{2}\cdot AH\cdot HM=\frac{3,5\cdot12}{2}=\frac{42}{2}=21\left(cm^2\right)\)

TK CKO MK NKA !!!