Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 2/1.2+2/2.3+2/3.4+...+2/8.9+2/9.10
=2/1-2/2+2/2-2/3+2/3-2/4+...+2/8-2/9+2/9-2/10
=2/1-2/10
=9/5
Đặt A = \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}+\frac{2}{9.10}\)
\(A\times2=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A\times2=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(A\times2=\frac{1}{1}-\frac{1}{10}\)
\(A=\frac{9}{10}\times\frac{1}{2}=\frac{9}{20}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
\(\frac{3}{1\cdot2}+\frac{3}{2\cdot3}+\frac{3}{3\cdot4}+...+\frac{3}{2017\cdot2018}\)
Ta có : \(=\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+\frac{3}{3}-\frac{3}{4}+...+\frac{3}{2017}-\frac{3}{2018}\)
\(=\frac{3}{1}-\frac{3}{2018}=\frac{6051}{2018}\)
Vậy \(\frac{3}{1\cdot2}+\frac{3}{2\cdot3}+\frac{3}{3\cdot4}+...+\frac{3}{2017\cdot2018}=\frac{6051}{2018}\)
3/1.2 + 3/2.3 + 3/3.4 + ... + 3/2017.2018
= \(3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)\)
= 3 . ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2017 - 1/2018 )
= 3 . ( 1 - 1/2018 )
= 3 . 2017/2018
= 6051/2018
a)
dãy trên có số chữ số là:
( 2016,2017 - 1,2 ) : 1,1 + 1 = 18339,1 chữ số
tổng là:
( 2016,2017 + 2,1 ) x 18339,1 : 2 = 18560918,35
b)
dãy trên có số chữ số là:
( 2016,2018 - 1,3 ) : 1,1 + 1 = 1832,73
tổng là:
( 2016,2018 + 1,3 ) x 1832,73 : 2 = 1848768,04
a)
dãy trên có số chữ số là:
( 2016,2017 - 1,2 ) : 1,1 + 1 = 18339,1 chữ số
tổng là:
( 2016,2017 + 2,1 ) x 18339,1 : 2 = 18560918,35
đáp số: 18560918,35
b)
dãy trên có số chữ số là:
( 2016,2018 - 1,3 ) : 1,1 + 1 = 1832,73 chữ số
tổng là:
( 2016,2018 + 1,3 ) x 1832,73 : 2 = 1848768,04
đáp số: 1848768,04
-----oOo-----
Ghi nhớ công thức tính dãy số cách đều
B1: tính số chữ số:
( số cuối - số đầu ) : khoảng cách + 1 = ... chữ số
B2: tính tổng:
( số đầu + số cuối ) x số chữ số : 2
chúc bạn học giỏi
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(A=1-\frac{1}{10}=\frac{9}{10}\)
\(\Rightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)
\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)
\(\Rightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)
\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}:1=5\)
\(\Rightarrow x=5-\frac{206}{100}=\frac{147}{50}\)
Vậy \(x=\frac{147}{50}.\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{14.15}+\frac{1}{15.16}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}\)
\(=1-\frac{1}{16}\)
\(=\frac{15}{16}\)
Chúc bạn học giỏi nha!!!
K cho mik vs nhé
1/1.2+1/2.3+1/3.4+.........+1/14.15+1/15.16
=1-1/2+1/2-1/3+...+1/15-1/16
=1-1/16
=15/16 *k mk nha*
Ta có: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Leftrightarrow100\left(\dfrac{1}{1}-\dfrac{1}{10}\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]\cdot2=89\)
\(\Leftrightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow x+\dfrac{103}{50}=5\)
hay \(x=\dfrac{147}{50}\)
A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{9.10}\)
A = \(\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+\frac{3}{3}-\frac{3}{4}+...+\frac{3}{9}-\frac{3}{10}\)
A = \(\frac{3}{1}-\frac{3}{10}\)
A = \(\frac{27}{10}\)
Vậy A = \(\frac{27}{10}\)
\(\frac{3}{1\cdot2}+\frac{3}{2\cdot3}+\frac{3}{3\cdot4}+...+\frac{3}{9\cdot10}\)
\(=3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{10}\right)\)
\(=3\frac{9}{10}=\frac{27}{10}\)