K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2023

a) \(A=2+2^2+...+2^{2024}\)

\(2A=2^2+2^3+...+2^{2025}\)

\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)

\(A=2^{2025}-2\) 

b) \(2A+4=2n\)

\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)

\(\Rightarrow2^{2026}-4+4=2n\)

\(\Rightarrow2n=2^{2026}\)

\(\Rightarrow n=2^{2026}:2\)

\(\Rightarrow n=2^{2025}\) 

c) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)

d) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)

\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)

Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7

⇒ A : 7 dư 2 

10 tháng 11 2023

cái câu d nó cứ sao sao ý bn

hiu

Câu 1: 

a: \(A=7\left(1+7\right)+7^3\left(1+7\right)+...+7^7\left(1+7\right)\)

\(=8\left(1+7^3+...+7^7\right)⋮2\)

Do đó: A là số chẵn

b: \(A=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)

\(=400\left(7+7^5\right)⋮5\)

14 tháng 5 2017

B1
a)
\(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{28\cdot31}\\ =\dfrac{1}{3}\cdot\dfrac{3}{1\cdot4}+\dfrac{1}{3}\cdot\dfrac{3}{4\cdot7}+\dfrac{1}{3}\cdot\dfrac{3}{7\cdot10}+...+\dfrac{1}{3}\cdot\dfrac{3}{28\cdot31}\\ =\dfrac{1}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{28\cdot31}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\right)\\ =\dfrac{1}{3}\cdot\left(1-\dfrac{1}{31}\right)\\ =\dfrac{1}{3}\cdot\dfrac{30}{31}\\ =\dfrac{10}{31}\)
b)
\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\ =\dfrac{5}{2}\cdot\dfrac{2}{1\cdot3}+\dfrac{5}{2}\cdot\dfrac{2}{3\cdot5}+\dfrac{5}{2}\cdot\dfrac{2}{5\cdot7}+...+\dfrac{5}{2}\cdot\dfrac{2}{99\cdot101}\\ =\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\dfrac{100}{101}\\ =\dfrac{250}{101}\)
B2
\(A=\dfrac{10^5+4}{10^5-1}=\dfrac{10^5-1+5}{10^5-1}=\dfrac{10^5-1}{10^5-1}+\dfrac{5}{10^5-1}=1+\dfrac{5}{10^5-1}\\ B=\dfrac{10^5+3}{10^5-2}=\dfrac{10^5-2+5}{10^5-2}=\dfrac{10^5-2}{10^5-2}+\dfrac{5}{10^5-2}=1+\dfrac{5}{10^5-2} \)
\(10^5-1>10^5-2\Rightarrow\dfrac{5}{10^5-1}< \dfrac{5}{10^5-2}\Rightarrow1+\dfrac{5}{10^5-1}< 1+\dfrac{5}{10^5-2}\Leftrightarrow A< B\)

14 tháng 5 2017

B3
\(A=\dfrac{n-2}{n+3}\)
Để \(A\) có giá trị nguyên thì \(n-2⋮n+3\)
\(n-2=n+3+\left(-5\right)⋮n+3\Rightarrow-5⋮n+3\Rightarrow n+3\inƯ\left(-5\right)\)
\(Ư\left(-5\right)=\left\{-5;-1;1;5\right\}\)

n+3 -5 -1 1 5
n -8 -4 -2 2

Vậy \(n\in\left\{-8;-4;-2;2\right\}\)

\(B=\dfrac{3n+1}{n-1}\)
Để \(A\) có giá trị nguyên thì \(3n+1⋮n-1\)
\(3n+1=3n-3+4⋮n-1\Leftrightarrow3\cdot\left(n-1\right)+4⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
n-1 -4 -2 -1 1 2 4
n -3 -1 0 2 3 5

Vậy \(n\in\left\{-3;-1;0;2;3;5\right\}\)

Bài 2: 

\(B=x^2+2xy^2-3xy-2\)

Thay x=2 và y=3 vào B, ta được:

\(B=2^2+2\cdot2\cdot3^2-3\cdot2\cdot3-2=20\)

Thay x=2 và y=-3 vào B, ta được:

\(B=2^2+2\cdot2\cdot\left(-3\right)^2-3\cdot2\cdot\left(-3\right)-2=56\)

Số A là:

\(60,6:60\%=101\)

Số B là:

\(237,6:80\%=297\)

Tỉ số giữa A và B:

\(\dfrac{A}{B}=\dfrac{101}{297}\)

31 tháng 5 2017

Giá trị của A là : 60,6 : 60%=101

Giá trị của B là: 237,6 : 80% = 297

Tỉ số giữa A và B : 101 : 297 = \(\dfrac{101}{297}\)

Vậy tỉ số giữa A và B là : \(\dfrac{101}{297}\)

21 tháng 11 2017

a) Ta có : \(3n+2⋮n-1\)

\(\Rightarrow\left(3n-3\right)+5⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-1=-1\Rightarrow n=0\\n-1=1\Rightarrow n=2\\n-1=-5\Rightarrow n=-4\\n-1=5\Rightarrow n=6\end{matrix}\right.\)

Vậy n=0 hoặc n=2 hoặc n=-4 hoặc n=6

b) Ta có: \(n^2+2n+7⋮n+2\)

\(\Rightarrow n\left(n+2\right)+7⋮n+2\)

\(\Rightarrow7⋮n+2\)

\(\Rightarrow n+2\in\left\{-1;1;-7;7\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+2=-1\Rightarrow n=-3\\n+2=1\Rightarrow n=-1\\n+2=-7\Rightarrow n=-9\\n+2=7\Rightarrow n=5\end{matrix}\right.\)

Vậy n=-3 hoặc n=-1 hoặc n=-9 hoặc n=5

21 tháng 11 2017

đề bài là sao bạn

26 tháng 2 2017

a) Nhân cả tử và mẫu với 2.4.6...40 ta được :

\(\frac{1.3.5...39}{21.22.23...40}\)=\(\frac{\left(1.3.5...39\right)\left(2.4.6..40\right)}{\left(21.22.23...40\right)\left(2.4.6...40\right)}\)

= \(\frac{1.2.3...39.40}{21.22.23...40.\left(1.2.3...20\right).2^{20}}\)

=\(\frac{1}{2^{20}}\)

b) Nhân cả tử và mẫu với 2.4.6...2n rồi biến đổi như câu a.

26 tháng 2 2017

Cảm ơn bạn thanghoayeu

a: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)

=>x=12; y2=1; z3=-8

=>x=12; \(y\in\left\{1;-1\right\}\); z=-2

b: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{z}{-17}=\dfrac{t}{9}\)

=>x/5=y/-3=z/-17=t/9=-2

=>x=-10; y=6; z=34; t=-18

29 tháng 5 2017

a)Ta có :

\(S=3+3^2+3^3+.................+3^{1998}\)(1998 số hạng)

\(\Rightarrow S=\left(3+3^2\right)+\left(3^3+3^4\right)+..............+\left(3^{1997}+3^{1998}\right)\)(999 nhóm)

\(\Rightarrow S=12+3^3\left(3+3^2\right)+.................+3^{1997}\left(3+3^2\right)\)

\(\Rightarrow S=12\left(1+3+3^2+.................+3^{1997}\right)\)

\(\Rightarrow S⋮12\rightarrowđpcm\)

b) Ta có :

\(S=3+3^2+3^3+......................+3^{1998}\)

\(\Rightarrow S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.............+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(\Rightarrow S=39+3^4\left(3+3^2+3^3\right)+....................+3^{1996}\left(3+3^2+3^3\right)\)

\(\Rightarrow S=39+3^4.39+................+3^{1996}.39\)

\(\Rightarrow S=39\left(1+3^4+............+3^{1996}\right)\)

\(\Rightarrow S⋮39\rightarrowđpcm\)

đề sai rồi bạn