K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

Gọi x là số đơn vị sản phẩm loại I, y là số đơn vị sản phẩm loại II sản xuất ra.

Như vậy tiền lãi có được là L = 3x + 5y (nghìn đồng).

Theo đề bài: Nhóm A cần 2x + 2y máy;

Nhóm B cần 0x + 2y máy;

Nhóm C cần 2x + 4y máy;

Vì số máy tối đa ở nhóm A là 10 máy, nhóm B là 4 máy, nhóm C là 12 máy nên x, y phải thỏa mãn hệ bất phương trình: Giải bài 3 trang 99 SGK Đại Số 10 | Giải toán lớp 10

Khi đó bài toán trở thành: trong các nghiệm của hệ bất phương trình (1) thì nghiệm (x = xo; y = yo) nào cho L = 3x + 5y lớn nhất.

Miền nghiệm của hệ bất phương trình (1) là ngũ giác ABCDE kể cả miền trong.

Giải bài 3 trang 99 SGK Đại Số 10 | Giải toán lớp 10

Ta có: L đạt giá trị lớn nhất tại một trong các đỉnh của ngũ giác ABCDE.

Tính giá trị của biểu thức L = 3x + 5y tại các đỉnh ta được:

Tại đỉnh A(0;2), L = 10

Tại đỉnh B(2; 2), L = 16

Tại đỉnh C(4; 1), L = 17

Tại đỉnh D(5; 0), L = 15

Tại đỉnh E(0; 0), L = 0.

Do đó, L = 3x + 5y lớn nhất là 17 (nghìn đồng) khi: x = 4; y = 1

Vậy để có tiền lãi cao nhất, cần sản xuất 4 đơn vị sản phẩm loại I và 1 đơn vị sản phẩm loại II.

15 tháng 4 2017

Gọi x là số đơn vị sản phẩm loại I, y là số đơn vị sản phẩm loại II được nhà máy lập kế hoạch sản xuất. Khi đó số lãi nhà máy nhân được là P = 3x + 5y (nghìn đồng).

Các đại lượng x, y phải thỏa mãn các điều kiện sau:

(I)

(II)

Miền nghiệm của hệ bất phương trình (II) là đa giác OABCD (kể cả biên).

Biểu thức F = 3x + 5y đạt giá trị lớn nhất khi (x; y) là tọa độ đỉnh C.

(Từ 3x + 5y = 0 => y = Các đường thẳng qua các đỉnh của OABCD và song song với đường y = cát Oy tại điểm có tung độ lớn nhất là đường thẳng qua đỉnh C).

Phương trình hoành độ điểm C: 5 - x = <=> x = 4.

Suy ra tung độ điểm C là yc = 5 - 4 = 1. Tọa độ C(4; 1). Vậy trong các điều kiện cho phép của nhà máy, nếu sản xuất 4 đơn vị sản phẩm loại I và 1 đơn vị sản phẩm đơn vị loại II thì tổng số tiền lãi lớn nhất bằng:

Fc = 3.4 + 5.1 = 17 nghìn đồng.

24 tháng 9 2023

Tham khảo:

Gọi x, y lần lượt là số tấn sản phẩm X, Y mà xưởng cần sản xuất mỗi ngày.

Ta có các điều kiện ràng buộc đối với x, y như sau:

-          Hiển nhiên \(x \ge 0,y \ge 0\)

-          Máy A làm việc không quá 12 giờ một ngày nên \(6x + 2y \le 12\)

-          Máy B làm việc không quá 8 giờ một ngày nên \(2x + 2y \le 8\)

Từ đó ta có hệ bất phương trình:

\(\left\{ \begin{array}{l}6x + 2y \le 12\\2x + 2y \le 8\\x \ge 0\\y \ge 0\end{array} \right.\)

Biểu diễn từng miền nghiệm của mỗi bất phương trình trên hệ trục tọa độ Oxy.

Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

Với các đỉnh \(O(0;0),A(0;4),\)\(B(1;3),\)\(C(2;0).\)

Gọi F là số tiền lãi (đơn vị: triệu đồng) thu về, ta có: \(F = 10x + 8y\)

Tính giá trị của F tại các đỉnh của tứ giác:

Tại \(O(0;0),\)\(F = 10.0 + 8.0 = 0\)

Tại \(A(0;4):\)\(F = 10.0 + 8.4 = 32\)

Tại \(B(1;3),\)\(F = 10.1 + 8.3 = 34\)

Tại \(C(2;0).\)\(F = 10.2 + 8.0 = 20\)

F đạt giá trị lớn nhất bằng \(34\) tại \(B(1;3).\)

Vậy xưởng đó nên sản xuất 1 tấn sản phầm loại X và 3 tấn sản phầm loại Y để tổng số tiền lãi là lớn nhất.

Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 6 triệu đồng, một tấn sản phẩm loại II lãi 4,8 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể...
Đọc tiếp

Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 6 triệu đồng, một tấn sản phẩm loại II lãi 4,8 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai loại sản phẩm. Máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 chỉ làm việc không quá 4 giờ. Gỉa sử số tấn sản phẩm loại I, II sản xuất trong một ngày lần lượt là x,y

a) viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó

b) gọi F( triệu đồng ) là số tiền lãi thu được trong một ngày

c) Cần sản xuất bao nhiêu tấn sản phẩm loại I và loại II trong một ngày để số tiền lãi thu được là cao nhất

0
10 tháng 11 2023

loading... loading... 

25 tháng 9 2023

Tham khảo:

Gọi x, y lần lượt là số kilogam sản phẩm loại A, loại B mà công ty đó sản xuất.

Ta có các điều kiện ràng buộc đối với x, y như sau:

-          Hiển nhiên \(x \ge 0,y \ge 0\)

-          Nguyên liệu loại I có số kilogam dự trữ là 8 kg nên \(2x + y \le 8\)

-          Nguyên liệu loại II có số kilogam dự trữ là 24 kg nên \(4x + 4y \le 24\)

-          Nguyên liệu loại III có số kilogam dự trữ là 8 kg nên \(x + 2y \le 8\)

Từ đó ta có hệ bất phương trình:

\(\left\{ \begin{array}{l}2x + y \le 8\\4x + 4y \le 24\\x + 2y \le 8\\x \ge 0\\y \ge 0\end{array} \right.\)

Biểu diễn từng miền nghiệm của mỗi bất phương trình trên hệ trục tọa độ Oxy.

Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

Với các đỉnh  \(O(0;0),A(0;4),\)\(B(\frac{8}{3};\frac{8}{3}),\)\(C(4;0).\)

Gọi F là số tiền lãi (đơn vị: triệu đồng) thu về, ta có: \(F = 30x + 50y\)

Tính giá trị của F tại các đỉnh của tứ giác:

Tại \(O(0;0),\)\(F = 30.0 + 50.0 = 0\)

Tại \(A(0;4),\)\(F = 30.0 + 50.4 = 200\)

Tại \(B(\frac{8}{3};\frac{8}{3}),\)\(F = 30.\frac{8}{3} + 50.\frac{8}{3} = \frac{{640}}{3}\)

Tại \(C(4;0):\)\(F = 30.4 + 50.0 = 120\)

F đạt giá trị lớn nhất bằng \(\frac{{640}}{3}\) tại \(B(\frac{8}{3};\frac{8}{3}).\)

Vậy công ty đó nên sản xuất \(\frac{8}{3}kg\) sản phẩm mỗi loại để tiền lãi thu về lớn nhất.

Một xí nghiệp sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại Ii lãi 1,6 triệu đồng. Muốn sản xuất 1 tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất 1 tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Biết rằng một máy không thể sản xuất đồng thời hai...
Đọc tiếp

Một xí nghiệp sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại Ii lãi 1,6 triệu đồng. Muốn sản xuất 1 tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất 1 tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Biết rằng một máy không thể sản xuất đồng thời hai loại sản phẩm; máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 một ngày chỉ làm việc không quá 4 giờ.
Hãy đặt kế hoạch sản xuất của xí nghiệp sao cho tổng số tiền lãi cao nhất.
A) một ngày sản xuất 1 tấn sản phẩm loại I và 3 tấn sản phẩm loại II.
B) một ngày sản xuất 1 tấn sản phẩm loại II và 3 tấn sản phẩm loại I.
C) một ngày sản xuất 2 tấn sản phẩm loại I và 2 tấn sản phẩm loại II.
D) một ngày sản xuất 3 tấn sản phẩm loại II.

1