K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2023

Đặt n = 3k \(\left(k\inℕ\right)\)

Khi đó P = 9k2 + 3k + 1 = 3k(3k + 1) + 1 \(⋮̸3\)

=> \(P⋮̸9\)

Tương tự với n = 3k + 1

P = 9k2 + 9k + 3 = 9k(k + 1) + 3\(⋮̸9\)

Với n = 3k + 2 

P = 9k2 + 15k + 7 = 3k(3k + 5) + 7 \(⋮̸3\Leftrightarrow P⋮̸9\)

=> ĐPCM 

25 tháng 3 2017

Ta có : n + n + 1 = n + ( n + 1 ) = n . ( n+1 ) + 1

Giả sử n chia hết cho 9 

 => nchia hết cho 9

 => ( n + 1 ) không chia hết cho 9

 => n2 + ( n + 1 ) không chia hết cho 9

 => điều giả sử là sai 

Vậy với mọi sô tựn nhiên n thì n2 + n + 1 không chia hết cho 9

10 tháng 12 2016

Chứng minh bằng phản chứng : 

Giả sử rằng tồn tại ít nhất một số tự nhiên n sao cho thỏa mãn \(n^2+7n+2014\) chia hết cho 9

Khi đó đặt n = 9k (k thuộc N)
 

Ta có \(n^2+7n+2014=\left(9k\right)^2+7.\left(9k\right)+2014=9.\left(9k^2+7k+223\right)+7\)

Từ đó ta thấy ngay điều giả sử sai, suy ra đpcm.

11 tháng 12 2016

Ta có

A = n2 + 7n + 2014 = (n + 2)(n + 5) + 2004

Giả sử A chia hết cho 9 thì A = 9k 

=> (n + 2)(n + 5) + 2004 = 9k (k tự nhiên)

Ta thấy 2004 chia hết cho 3 nên (n + 2)(n + 5) chia hết cho 3. Vậy 1 trong hai thừa số phải chia hết cho 3

Mà n + 5 - n - 2 = 3 chia hết cho 3 nên cả (n + 5) và (n + 2) đều chia hết cho 3.

Hay (n + 5)(n + 2) chia hết cho 9.

Mà A lại chia hết cho 9 nên 2004 chia hết cho 9 (vô lý)

Vậy không tồn tại số tự nhiên nào để A chia hết cho 9

1 tháng 5 2015

ta có: n2+n+1= (n+2)(n-1) +3 
ta thấy hiệu hai số: (n+2) -(n-1) =3 chia hết cho 3 
suy ra: 
( *) hoặc (n+2) và (n-1) cùng chia hết cho 3, khi đó (n+2)(n-1) chia hết cho 9 nhưng 3 không chia hết cho 9 , dó đó (n+2)(n-1) +3 không chia hết cho 9 hay n2+n+1 không chia hết cho 9 
(**) hoặc (n+2) và (n-1) cùng không chia hết cho 3, khi đó (n+2)(n-1) ko chia hết cho 3,suy ra (n+2)(n-1) +3 ko chia hết cho 3. Mà đã không chia hết cho 3 thì đương nhiên không chia hết cho 9 rồi
------Cho 1 Đ.ú.n,g nhé

10 tháng 12 2015

Vì n là số lẽ nên ta có : \(n=2k+1\left(k\in N\right)\). Thay vào :

\(\left(2k+1\right)^2-1=4k^2+4k+1-1=4k^2+4k=4k\left(k+1\right)\)

4 chia hết cho 4 ; \(k\left(k+1\right)\)là 2 số tự nhiên liên tiếp nên chia hết cho 2 \(\Rightarrow\left(2k+1\right)^2-1\) chia hết cho 8 (vì 4.2=8).

Vậy với mọi số tự nhiên n, nếu n là số lẽ thì \(n^2-1\) chia hết cho 8.

 

 

15 tháng 12 2023

Đặt A=\(n^4-n^2\)

\(=n^2\left(n^2-1\right)\)

\(=n^2\left(n-1\right)\left(n+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\cdot n\)

Vì \(n;n-1;n+1\) là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)

=>\(A=n\cdot n\left(n-1\right)\left(n+1\right)⋮6\)

=>\(A=n^4-n^2⋮12\)

TH1: n=2k

\(A=n\left(n-1\right)\cdot\left(n+1\right)\cdot n\)

\(=2k\cdot n\left(n-1\right)\left(n+1\right)\)

\(n\left(n-1\right)\left(n+1\right)⋮6\)

=>\(2n\left(n-1\right)\left(n+1\right)⋮2\cdot6=12\)

=>\(A⋮12\)(1)

TH2: n=2k+1

\(A=n\left(n-1\right)\left(n+1\right)\cdot n\)

\(=\left(2k+1\right)\left(2k+1-1\right)\left(2k+1+1\right)\cdot\left(2k+1\right)\)

\(=2k\left(2k+1\right)\left(2k+2\right)\cdot\left(2k+1\right)\)

\(=4k\left(2k+1\right)\left(k+1\right)\cdot\left(2k+1\right)\)

Vì k;k+1 là hai số nguyên liên tiếp

nên \(k\left(k+1\right)⋮2\)

=>\(4k\left(k+1\right)⋮4\cdot2=8\)

=>\(A=4k\left(2k+1\right)\left(k+1\right)\left(2k+1\right)⋮8\)

mà \(A⋮6\)

nên \(A⋮BCNN\left(6;8\right)=24\)

=>A chia hết cho 12(2)

Từ (1),(2) suy ra \(A⋮12\forall n\in N\)

NV
5 tháng 5 2021

Đặt \(A=n^4-10n^2+9\)

\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)

Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3

\(\Rightarrow A⋮3\)

Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Do n lẻ, đặt \(n=2k+1\)

\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8

\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)

Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)

25 tháng 1 2022

Thầy ơi cho em hỏi tại sao A lại chia hết cho 16.8 ạ ?? Thầy có thể giải thích được không ạ ?

5 tháng 12 2021

Ta có 52n+7 = 25n+7

Lại có 25:8 dư 1 => 25n:8 dư 1n

Mà 1n = 1 => 25n chia 8 dư 1

=> 25n+7 chia 8 dư 1+7 hay dư 8

Mà 8⋮8 => đpcm