Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân thích được thành (x+2)(y+2)=9
ở đây giải pt nghiêm nguyên là được ( 9=1x9=...)
#Học-tốt
tìm x, y nguyên biết:
xy + 2x + 2y = 9
x.(y+2)+2y=9
x.(y+2)+y=9
x.(y+2)+(y+2)=9
(x+1)(y+2)=9
Vì x;y là số nguyên => x+1 và y+2 là số nguyên
=> \(x+1;y+2\inƯ\left(9\right)\)
Ta có bảng:
x+1 | 1 | 9 | 3 | 3 | -1 | -9 | -3 | -3 |
y+2 | 9 | 1 | 3 | 3 | -9 | -1 | -3 | -3 |
x | 0 | 8 | 2 | 2 | -2 | -10 | -4 | -4 |
y | 7 | -1 | 1 | 1 | -11 | -3 | -5 | -5 |
Vậy.....................................................................................
a)
\(\dfrac{111}{37}=3< x< \dfrac{91}{13}=7\)
Vậy x = {4;5;6}
b)
\(-\dfrac{84}{14}=-6< 3x< \dfrac{108}{9}=12\Leftrightarrow-2< x< 4\)
Vậy x = {-1;0;1;2;3}
a, Ta có : \(\dfrac{111}{37}< x< \dfrac{91}{13}\)
\(\Rightarrow3< x< 7\)
Mà x là số nguyên .
\(\Rightarrow x\in\left\{4;5;6\right\}\)
b, Ta có : \(-\dfrac{84}{14.3}< x< \dfrac{108}{9.3}\)
\(\Rightarrow-2< x< 4\)
Mà x là số nguyên .
\(\Rightarrow x\in\left\{-1;0;1;2;3\right\}\)
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\right).x=\dfrac{22}{45}\)
=> \(\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{8.9.10}\right).x=\dfrac{22}{45}\)
=> \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-...-\dfrac{1}{9.10}\right).x=\dfrac{22}{45}\)
=> \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{9.10}\right).x=\dfrac{22}{45}\)
=> \(\dfrac{1}{2}.\dfrac{22}{45}.x=\dfrac{22}{45}\)
=> \(\dfrac{1}{2}.x=1\)
=> \(x=2\)
Vậy x = 2
Chúc bạn học tốt !!!
Theo đề: \(2x+y=0\Leftrightarrow y=-2x\) \(\left(1\right)\)
Ta có:
\(\dfrac{3-x}{y-4}=\dfrac{2}{5}\)
\(\Leftrightarrow5\left(3-x\right)=2\left(y-4\right)\)
\(\Leftrightarrow15-5x=2y-8\)
\(\Leftrightarrow15+8=2y+5x\)
\(\Leftrightarrow5x+2y=23\) \(\left(2\right)\)
Thế (1) vào (2), suy ra:
\(5x+2.\left(-2x\right)=23\)
\(\Leftrightarrow5x-4x=23\)
\(\Leftrightarrow x=23\)
\(\Rightarrow y=-2.23=-46\)
Lời giải:
a.
$x=\frac{-5}{6}-\frac{2}{3}=\frac{-3}{2}$
b.
$\frac{2}{3}x=\frac{1}{10}-\frac{1}{2}=\frac{-2}{5}$
$x=\frac{-2}{5}: \frac{2}{3}=\frac{-3}{5}$
c.
$\frac{7}{8}x=\frac{2}{9}-\frac{1}{3}=\frac{-1}{9}$
$x=\frac{-1}{9}: \frac{7}{8}=\frac{-8}{63}$
d.
$\frac{5}{7}: x=\frac{1}{6}-\frac{4}{5}=\frac{-19}{30}$
$x=\frac{5}{7}: \frac{-19}{30}=\frac{-150}{133}$
e.
$(\frac{2}{5}-1\frac{2}{3}):x=\frac{2}{5}+\frac{3}{5}=1$
$\frac{-19}{15}: x=1$
$x=\frac{-19}{15}:1 =\frac{-19}{15}$
f.
$(-\frac{3}{4}+x).2\frac{2}{3}=1$
$\frac{-3}{4}+x=1: 2\frac{2}{3}=\frac{3}{8}$
$x=\frac{3}{8}+\frac{3}{4}=\frac{9}{8}$
\(1+5^2+5^4+...+5^{2x}\left(1\right)=\dfrac{25^6-1}{24}\)
Đặt \(\left(1\right)=A\)
\(\Rightarrow A=1+5^2+...+5^{2x}\)
\(\Rightarrow5^2A=5^2+5^4+...+5^{2x+2}\)
\(\Rightarrow25A=5^2+5^4+...+5^{2x+2}\)
\(\Rightarrow25A-A=5^2+5^4+...+5^{2x+2}-1-5^2-...-5^{2x}\)
\(\Rightarrow24A=5^{2x+2}-1\)
\(\Rightarrow A=\dfrac{5^{2x+2}-1}{24}\)
Mà: \(A=\dfrac{25^6-1}{24}\)
\(\Rightarrow\dfrac{5^{2x+2}-1}{24}=\dfrac{\left(5^2\right)^6-1}{24}\)
\(\Rightarrow5^{2x+2}-1=5^{12}-1\)
\(\Rightarrow5^{2x+2}=5^{12}\)
\(\Rightarrow2x+2=12\)
\(\Rightarrow2x=10\)
\(\Rightarrow x=\dfrac{10}{2}\)
\(\Rightarrow x=5\)
\(\dfrac{2x}{-9}=\dfrac{10}{91}\)
\(\Leftrightarrow2x=-\dfrac{90}{91}\)
\(\Leftrightarrow x=-\dfrac{45}{91}\)