K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2023

loading...  

25 tháng 10 2023

loading...  loading...  

24 tháng 10 2023

loading...  

24 tháng 10 2023

loading...  loading...  

12 tháng 5 2021

                           Bài làm :

a) Ta có :

\(\widehat{ACB}\text{ là góc nội tếp chắn nửa đường tròn}\)

\(\Rightarrow\widehat{ACB}=90^o\Rightarrow\widehat{ACM}=180^o-\widehat{ACB}=90^o\)

Từ đó ; ta có :

\(\widehat{ACM}+\widehat{AHM}=90+90=180^o\)

=> Tứ giác AHMC là tứ giác nội tiếp đường tròn vì có 2 góc đối diện  = 180 độ 

=> Điều phải chứng minh

b) Theo phần a : Tứ giác AHMC là tứ giác nội tiếp 

\(\Rightarrow\widehat{AMH}=\widehat{ACH}\left(1\right)\)

Xét đường tròn (O) : Góc ADC và góc ABC đều là 2 góc nội tiếp cùng chắn cung AC

\(\Rightarrow\widehat{ADC}=\widehat{ABC}\left(2\right)\)

Vì CD⊥AB ; MH⊥AB

=> CD//MH 

=>∠ADC = ∠AMH ( 2góc so le trong ) (3)

Từ (1) ; (2) ; (3) 

\(\Rightarrow\widehat{ABC}=\widehat{ACH}\)

=> Điều phải chứng minh

c)∠AOC = 45o

=>∠COB = 180 - 45 = 135o

\(\Rightarrow S_{OCB}=\frac{\pi.R^2.n}{360}=\frac{\pi.2^2.135}{360}=\frac{3}{2}\pi\left(cm^2\right)\)

a) Xét tứ giác AHMC có 

góc ACM + góc AHM = 180 độ

Vậy tứ giác AHMC nội tiếp

 

13 tháng 5 2021

a. Xét (O) , có:
CD \(\perp\)AB = {H}
=> \(\widehat{CHA}=90^o\Rightarrow\widehat{CHE}=90^o\)

Có: \(\widehat{CMD}\)là góc nội tiếp chắn nửa đường tròn đường kính CD
=> \(\widehat{CMD}=90^o\Rightarrow\widehat{CME}=90^o\)

Xét tứ giác CMEH, có:
\(\widehat{CME}+\widehat{CHE}=90^o+90^o=180^o\)

2 góc \(\widehat{CME}\)và \(\widehat{CHE}\)là 2 góc đối nhau
=> CMEH là tứ giác nội tiếp (đpcm)

15 tháng 5 2021

Câu a: Có góc CHE=90 độ (vì CD\(\perp AB\) tại H)

                  Góc CMD =90 độ(góc nt chắn nửa đt)

             Mà góc CHE và góc CMD ở vị trí đối nhau

 ⇒ Tứ giác CMEH nội tiếp

Câu b:

   Xét \(\Delta NACva\Delta NMB\) có :

     Góc N chung

     Góc NCA = góc NBM (cùng chắn cung MA)

⇒ \(\Delta NAC\) đồng dạng \(\Delta NBM\) (góc góc)

  ⇒\(\dfrac{NM}{NA}\)=\(\dfrac{NB}{NC}\)⇔NM.NC=NA.NB

Câu c:

Có góc PMA=90 độ ( góc nt chắn nửa đt)→PM\(\perp\)AK

                                                            Mà IK\(\perp\)AK

                                           ⇒IK song song với MP (từ vuông góc đến song song

 

13 tháng 11 2021

a: BC=8cm

\(\widehat{C}=30^0\)

\(\widehat{B}=60^0\)

a:

Gọi O là trung điểm của AB

Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>BD vuông góc AC tại D

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>AE vuông góc BC tại E

Xét tứ giác CDHE có

góc CDH+góc CEH=180 độ

=>CDHE nội tiếp

b: Xét ΔCAB có

AE,BD là đường cao

AE cắt BD tại H

=>H là trực tâm

=>CH vuông góc AB tại K

c: Xét ΔAKH vuông tại K và ΔAEB vuông tại E có

góc KAH chung

Do đó: ΔAKH đồng dạng với ΔAEB

=>AK/AE=AH/AB

=>AH*AE=AK*AB

Xét ΔBKH vuông tại K và ΔBDA vuông tại D có

góc KBH chung

Do đó: ΔBKH đồng dạng với ΔBDA
=>BK/BD=BH/BA

=>BK*BA=BH*BD

AH*AE+BH*BD

=AK*AB+BK*BA

=BA^2

4 tháng 9 2023

a) ....................... =) C, D, H, E cùng thuộc 1 đường tròn.

b) ....................... =) CH ⊥ AB.

c) ....................... =) AH.AE + BH.BD = AB2.

29 tháng 10 2023

 a) Ta có \(\widehat{CEB}=\widehat{CAB}=90^o\) nên 4 điểm A, B, C, E cùng thuộc đường tròn đường kính BC.

 b) Kẻ \(FP\perp BC\) tại P. Ta thấy D là trực tâm tam giác FBC nên \(P\in DF\). Dễ thấy \(\Delta CDP~\Delta CBA\left(g.g\right)\) \(\Rightarrow\dfrac{CD}{CB}=\dfrac{CP}{CA}\) \(\Rightarrow CD.CA=CB.CP\)

CMTT, ta có \(BD.BE=BC.BP\)

Do đó \(CD.CA+BD.BE=CB.CP+BC.BP\) \(=BC\left(CP+BP\right)\) \(=BC^2\). Vậy đẳng thức được chứng minh.

13 tháng 10 2018

a, Chứng minh:  A B E ^ = A D E ^

b, Chứng minh được:  A C B ^ = B N M ^

=> C, D, E nhìn AB dưới góc bằng nhau nên A, B, C, D, E cùng thuộc một đường tròn

=> BC là đường kính =>  B E C ^ = 90 0