Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) - 4 \(\ge\)x < -3 => x = - 4
A = {-4}
b) - 9 < x \(\le\)3 => x = -8, -7, -6, -5 , -4, -3, -2, -1, 0, 1 , 2, 3
A = {-8, -7, -6, -5 , -4, -3, -2, -1, 0, 1 , 2, 3}
Bài 1:
Ta có:
\(\left|x+19\right|\ge0\)
\(\left|x+5\right|\ge0\)
\(\left|x+2011\right|\ge0\)
\(\Rightarrow\left|x+19\right|+\left|x+5\right|+\left|x+2011\right|\ge0\)
\(\Rightarrow4x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+19\right|+\left|x+5\right|+\left|x+2011\right|=x+19+x+5+x+2011\)
\(\Rightarrow x+19+x+5+x+2011=4x\)
\(\Rightarrow3x+2035=4x\)
\(\Rightarrow x=2035\)
Vậy \(x=2035\)
Bài 2:
\( \left|a\right|+\left|b\right|\ge\left|a+b\right|\) (*)
Bình phương 2 vế của (*) ta có:
\(\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\)
\(\Leftrightarrow a^2+b^2+2\left|ab\right|\ge a^2+b^2+2ab\)
\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng)
Đẳng thức xảy ra khi \(ab\ge0\)
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
1) Ta có: x thuộc Z => 3+x thuộc Z => |3+x| thuộc N
Mà -3<|3+x|<3
Tức là : 0<|3+x|<3
- |3+x|=1 => 3+x= \(\pm1\orbr{\begin{cases}\Rightarrow3+x=1\Rightarrow x=-2\\\Rightarrow3+x=-1\Rightarrow x=-4\end{cases}}\)
- |3+x|=2 => 3+x= \(\pm2\orbr{\begin{cases}\Rightarrow3+x=2\Rightarrow-1\\\Rightarrow3+x=-2\Rightarrow-5\end{cases}}\)
Vậy x thuộc {-2;-4;-2;-5} thì -3<|3+x|<3
nghiêm
ai mà bít