K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2022

a, Vì AB2+AC2=152+202=625 cm

         BC2=252=625 cm

=> AB2+AC2=BC2 => tg ABC vuông tại A

b, Ta có AB2+AC2=32 cm

              BC2=32 cm

=> AB2+AC2=BC=> tg ABC vuông tại A

Mà AB=AC=4cm

=> tg ABC vuông cân tại A

11 tháng 1 2016

Kẻ AH vuông góc với BC

Ta có: AB2+AC2=152+202=625

BC2=252=625

=>Tam giác ABC vuông tại A

=> SABC=AB.AC/2 hoặc SABC=AH.BC/2

=>AB.AC/2=AH.BC/2

=>AB.AC=AH.BC

=>15.20=AH.25

=>AH=12

Vậy k/c cần tìm là 12 cm

11 tháng 1 2016

no biet minh chua hoc den

a: Xét ΔABD và ΔACE có

góc ABD=góc ACE

AB=AC

góc BAD chung

=>ΔABD=ΔACE

=>BD=CE

b: Xét ΔADE có AD=AE

nên ΔADE cân tại A

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

1: Xét ΔAHD vuông tại H có ΔAED vuông tại E có

AD chung

\(\widehat{HAD}=\widehat{EAD}\)

Do đó; ΔAHD=ΔAED

2: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{BDA}+\widehat{HAD}=90^0\)

mà \(\widehat{HAD}=\widehat{CAD}\)

nên \(\widehat{BAD}=\widehat{BDA}\)

hay ΔBAD cân tại B

a: ΔABC cân tại A

b: ΔABC đều

a) Xét ΔABC có AB=BC>AC(6cm=6cm>4cm)

mà góc đối diện với cạnh AB là góc ACB

và góc đối diện với cạnh BC là góc BAC

và góc đối diện với cạnh AC là góc ABC

nên \(\widehat{ACB}=\widehat{BAC}>\widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

b) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=AB^2+BC^2\)

\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)

hay BC=8(cm)

Xét ΔABC có AB<BC<AC(6cm<8cm<10cm)

mà góc đối diện với cạnh AB là góc ACB

và góc đối diện với cạnh BC là góc BAC

và góc đối diện với cạnh AC là góc ABC

nên \(\widehat{ACB}< \widehat{BAC}< \widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)