Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AH vuông góc với BC
Ta có: AB2+AC2=152+202=625
BC2=252=625
=>Tam giác ABC vuông tại A
=> SABC=AB.AC/2 hoặc SABC=AH.BC/2
=>AB.AC/2=AH.BC/2
=>AB.AC=AH.BC
=>15.20=AH.25
=>AH=12
Vậy k/c cần tìm là 12 cm
a: Xét ΔABD và ΔACE có
góc ABD=góc ACE
AB=AC
góc BAD chung
=>ΔABD=ΔACE
=>BD=CE
b: Xét ΔADE có AD=AE
nên ΔADE cân tại A
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
1: Xét ΔAHD vuông tại H có ΔAED vuông tại E có
AD chung
\(\widehat{HAD}=\widehat{EAD}\)
Do đó; ΔAHD=ΔAED
2: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{BDA}+\widehat{HAD}=90^0\)
mà \(\widehat{HAD}=\widehat{CAD}\)
nên \(\widehat{BAD}=\widehat{BDA}\)
hay ΔBAD cân tại B
a) Xét ΔABC có AB=BC>AC(6cm=6cm>4cm)
mà góc đối diện với cạnh AB là góc ACB
và góc đối diện với cạnh BC là góc BAC
và góc đối diện với cạnh AC là góc ABC
nên \(\widehat{ACB}=\widehat{BAC}>\widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
b) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Xét ΔABC có AB<BC<AC(6cm<8cm<10cm)
mà góc đối diện với cạnh AB là góc ACB
và góc đối diện với cạnh BC là góc BAC
và góc đối diện với cạnh AC là góc ABC
nên \(\widehat{ACB}< \widehat{BAC}< \widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
a, Vì AB2+AC2=152+202=625 cm
BC2=252=625 cm
=> AB2+AC2=BC2 => tg ABC vuông tại A
b, Ta có AB2+AC2=32 cm
BC2=32 cm
=> AB2+AC2=BC2 => tg ABC vuông tại A
Mà AB=AC=4cm
=> tg ABC vuông cân tại A