K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2015

Hình như đề bài sai.Phải là: Cho p là SNT>3.CM: (p+1)(p-1) luôn chia hết cho 3

Nếu như vậy thì bài làm đây:

Vì p là số nguyên tố > 3 nên p có 2 dạng: 3k+1 và 3k+2 ( k thuộc N*)

-Nếu p = 3k+1 ( k thuộc N*)

Ta có: p-1=3k+1-1=3k

=>3k chai hết cho 3.  Hay p-1 chia hết cho 3

=>(p+1)(p-1) chia hết cho 3

-Nếu p=3k+2(k thuộc N*)

Ta có: p+1=3k+2+1=3k+3=3(k+1)

=>3(k+1) chia hết cho 3.Hay p+1 chia hết cho 3

=>(p+1)(p-1) chia hết cho 3

 Vậy (p+1)(p-1) luôn chia hết cho 3 (Với p là SNT >3)

10 tháng 12 2015

Goi b la so nghuyen to lon hon 3  chia cho 3 xay ra 3 truong hop                                                                                                                 truong hop 1:b chia het cho 3 suy ra b khong phai la so nghuyen to    (khong duoc)                                                                                  truong hop 2 :b chia cho 3 du 1    (duoc                                                                                                                                                  truong hop 3:b cia cho 3 du 2     (duoc)

24 tháng 6 2022

b) vì p là số nguyên tố>3(gt)

=>p có dạng 3k+1 howacj 3k+2

Nếu p=3k+2

=> p+4=3k+6 ⋮ 3

mà p+4 là số nguyên tố>3(do p>3)

=>p+4=3k+6 không thỏa mãn p+4 là số nguyên tố

Nếu p=3k+1

=> p+4=3k+5 (hợp lí)

vậy p+8 là hợp số

=>p+8=3k+9 ⋮ 3

=>p+8 là hợp số

c)vì p là số nguyên tố>3(gt)

=>p lẻ =>(p-1)(p+1) là tích 2 số chẵn liên tiếp

g/s với kϵN ta có 2k(2k+2)là tích 2 chẵn liên tiếp

2k(2k+2)=4k(k+1)

với kϵN ta có k(k+1)là tích 2 số tự nhiên liên tiếp

=> k(k+1)⋮2

=>4k(k+1)⋮8

=>tích 2 số tự nhiên liên tiếp luôn chia hết cho 8

=>(p-1)(p+1) ⋮ 8 (1)

ta có p-1; p; p+1 là 3 số tự nhiên liên tiếp

=>(p-1)p(p+1)⋮3

mà p là số nguyên tố>3(gt) => p không chia hết cho 3

=> (p-1)(p+1) ⋮ 3 (2)

từ (1),(2) kết hợp với 3; 8 là 2 số nguyên tố cùng nhau

=> (p-1)(p+1) ⋮ (3.8)

=> (p-1)(p+1) ⋮ 24

10 tháng 6 2018

P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)

=3(1+2^2+2^4+2^6)

=>đpcm

22 tháng 3 2016

p nguyên tố > 3

=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 

10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) mà 2 và 3 đều là những số nguyên tố nên từ (*)

=> 5p+1 chia hết cho 3 
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

1 tháng 11 2016

gt là gì đấy bạn

p>3=>p-1;p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8

p là số nguyên tố lớn hơn 3=>p có dạng 3k+1;3k+2

=>p-1 hoặc p+1 chia hết cho 3

=>(p-1)(p+1) chia hết cho 3

(8;3)=>(p-1)(p+1) chia hết cho 24       

=>đpcm

7 tháng 7 2016

cách 1

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

cách 2

Ta có (p-1). p.(p+1) chia het cho 3 ; mà ( p;3)=1 =>(p-1). (p+1)  3 (1) 
Ví p là số nguyên tố lớn hơn 3 => p là số lẻ =>p-1;p+1 là số chẵn (2) 
Từ (1) và (2) => (p-1). p.(p+1) chia hết cho hai số nguyên tố cùng nhau 3 và 8. 
Vậy (p-1). p.(p+1) chia het cho 24

bn thích chọn cách nào thì chọn nhưng k mk nha!!! ^o~

23 tháng 10 2015

(p - 1)(p+4) chia hết cho 6

p > 3 và p là số nguyên tố => p không chia hết cho 3

=> Nếu p - 1 chia 3 dư 2 thì p + 4 chia hết cho 3

=> Nếu p  + 4 chia 3 dư 1 thì p -1 chia hết cho 3

=> (p-1)(p+4) chia hết cho 3

Mà (p-1)(p+4) luôn chia hết cho 2 

Vậy (p-1)(p+4) chia hết cho 6   

23 tháng 10 2015

p là số nguyên tố > 3 

=> p =3k+1 ; 3k+2 ( k\(\in\)N*)

Xét p =3k+1 

=> (p-1).(p+4)

= (3k+1-1).(3k+1+4)

= 3k.(3k+5) chia hết cho 3 

Xét p= 3k+2

=> (p-1).(p+4)

= (3k+2-1).(3k+2+4)

= (3k+1).(3k+6)

= (3k+1).3.(k+2) chia hết cho 3 

=> (p-1).(p+4) luôn chia hết cho 3 với p là các số nguyên tố > 3 

=> điều phải cùng minh 

4 tháng 11 2016

Câu 3 phần b dấu + ở cuối là dấu = nha các bạn