Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có:
a + b =150
ƯCLN (a, b) = 5
\(\Rightarrow\) a = 5.m trong đó ƯCLN(m, n) = 1 (vì ƯCLN(a,b) = 5)
b = 5.n
\(\Rightarrow\) 5m + 5n = 150
5 (m + n) = 150
\(\Rightarrow\) m + n = \(\frac{150}{5}\) = 30
m | 29 | 23 | 21 | 19 | 17 |
n | 1 | 7 | 9 | 11 | 13 |
a= 5m | 145 | 115 | 105 | 95 | 85 |
b= 5n | 5 | 35 | 45 | 55 | 65 |
Vậy a có thể bằng 145, 115, 105, 95, 85
b có thể bằng 5, 35, 45, 55, 65
2) Ta có:
a . b = 768
ƯCLN(a, b) = 8
\(\Rightarrow\) a = 8 . m trong đó ƯCLN(m; n) = 1 (vì ƯCLN(a,b) = 8)
b = 8 . n
\(\Rightarrow\) 8m . 8n = 768
\(\Rightarrow\) m . n = \(\frac{768}{8^2}\)= 12
m | 12 | 4 |
n | 1 | 3 |
a = 8m | 96 | 32 |
b = 8n | 8 | 24 |
Vậy a bằng 96 và b bằng 8
a bằng 32 và b bằng 24
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
ta có đăt a=8.a1 b=8.b1(a1;b1)=1
a+b=8.(a1+b1)=32 nên a1+b1=4
gia sử a1>b1 va (a1;b1)=1
nen a1=3,b1=1
nen a=24
b=8
to làm cau a câu tự lam câu b đi
Lời giải:
a. Gọi $d=ƯCLN(a,b)$. Khi đó, đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Khi đó: $BCNN(a,b)=dxy$
Theo bài ra: $d+dxy=19$
$\Rightarrow d(1+xy)=19$
Do $d, 1+xy$ đều là số tự nhiên nên có 2 TH xảy ra:
TH1: $d=1, 1+xy=19\Rightarrow d=1, xy=18$
Do $ƯCLN(x,y)=1$ nên $(x,y)=(1,18), (2,9), (9,2), (18,1)$
$\Rightarrow (a,b)=(dx, dy) +(1,18), (2,9), (9,2), (18,1)$
b,c bạn làm tương tự theo hướng của câu a nhé.
1. ƯCLN(a, b) = 8 suy ra a và b chia hết cho 8
mà có thêm một cách tìm a và b là a + b = 32 suy ra ta phải tìm các bội của 8 mà là ước của 32
có hai số là: 8 và 32
=> nếu a = 8 và b = 32 - 8 = 24 thì a + b = 32(chọn)
nếu a = 32 và b = 0 thì hai số nàu có ƯCLN là 32(loại)
suy ra a = 24 và b = 8
2. bạn làm tương tự
tick mik nha
a. (a,b)=(1,7),(2,6),(3,5),(4,4), (5,3),(6,2), (7,1), (0,8), (8,0)
b.(a,b)=(6,36),(12,18),(18,12),(36,6)