Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left(2-x\right)\left(x^2+4\right)>0\Leftrightarrow2-x>0\Leftrightarrow x< 2\\ b,\Leftrightarrow x+3>0\Leftrightarrow x>-3\\ c,\Leftrightarrow\left[{}\begin{matrix}x< -3\\x>4\end{matrix}\right.\)
a) x ( x + 6 ) = 0 ⇔ x = 0 x + 6 = 0 ⇔ x = 0 x = − 6
Vậy x = 0 hoặc x = - 6
b) ( x − 3 ) . ( y + 7 ) = 0 ⇔ x − 3 = 0 y + 7 = 0 ⇔ x = 3 y = − 7
Vậy x = 3 hoặc x = -7
c) ( x − 2 ) ( x 2 + 2 ) = 0 ⇔ x − 2 = 0 x 2 + 2 = 0 ⇔ x = 2 x 2 = − 2 ( L )
Vậy x = 2
A=[(-4x-8)+13]/(x+2)
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z)
hay (x+2) thuộc Ư(13)={-1;1;13;-13}
tìm x
B=[(x²-1)+6]/(x-1)
=x+1+6/(x-1)
làm tiếp như A
C=[(x²+3x+2)-3]/(x+2)
=[(x+2)(x+1)-3]/(x+2)
=x+1-3/(x+2)
làm tiếp như A
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không
3,4 cũng vậy
a) x(x+3)=0
TH1: x=0 TH2:x+3=0
x= -3
b)(x-2)(5-x)=0
TH1: x-2=0 TH2: 5-x=0
x= -2 x=5
c)làm tương tự những câu trên
chúc bạn học tốt
Lời giải:
a.
Ta thấy $x^2+4\geq 4>0$ với mọi $x$
$x^2+10\geq 10>0$ với mọi $x$
$\Rightarrow (x^2+4)(x^2+10)>0$ với mọi $x$
Do đó không tồn tại $x$ thỏa mãn $(x^2+4)(x^2+10)<0$
b.
$(x+3)(2-x)>0$
$\Rightarrow (x+3)(x-2)<0$
$\Rightarrow x+3, x-2$ trái dấu. Mà $x+3> x-2$ nên $x+3>0> x-2$
$\Rightarrow 2> x> -3$
$\Rightarrow x\in \left\{1;0; -1; -2\right\}$ (do $x$ nguyên)