Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}\)
\(=\sqrt{\frac{1}{4}\left(2x-1\right)^2+\frac{75}{4}}+\sqrt{\left(2x-1\right)^2+3\left(x+2\right)^2}+\sqrt{\frac{1}{4}\left(2x-1\right)^2+\frac{3}{4}\left(4x+3\right)^2}\)
\(\ge\sqrt{\frac{75}{4}}+\sqrt{3\left(x+2\right)^2}+\sqrt{\frac{3}{4}\left(4x+3\right)^2}\)
\(=\frac{5\sqrt{3}}{2}+\sqrt{3}\left(x+2\right)+\frac{\sqrt{3}\left(4x+3\right)}{2}=3\sqrt{3}\left(x+2\right)\)
Dấu = xảy ra khi ....
pt<=>căn((x-1/2)^2+75/4)+căn(2(x-1/2)^2+3(x+2)^2)+căn((x-1/2)^2+3(2x+3/2)^2)>=3*căn3(x+2)
dấu = xãy ra khi x=1/2
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+17}+3x\sqrt{3}\)
Tách thành các bình phương dưới căn sau đó tìm chặn đc nhé
Bạn nào làm đc thì 3 tick
a/ \(\sqrt{9x^2}=2x+1\)
\(\Leftrightarrow\left|3x\right|=2x+1\)
+) Với x ≥ 0 ta có:
\(3x=2x+1\Leftrightarrow x=1\left(tm\right)\)
+) Với x < 0 có:
\(3x=-2x-1\Leftrightarrow5x=-1\Leftrightarrow x=-\dfrac{1}{5}\left(tm\right)\)
Vậy pt có 2 nghiệm..............................
b/ \(\sqrt{1-4x+4x^2}=5\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)
\(\Leftrightarrow\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)(t/m)
Vậy................................
c/ \(\sqrt{x^2+6x+9}=3x-1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
+) Với x ≥ -3 ta có:
\(x+3=3x-1\Leftrightarrow-2x=-4\Leftrightarrow x=2\left(tm\right)\)
+) Với x < -3 có:
\(x+3=1-3x\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\left(ktm\right)\)
Vậy pt có 1 nghiệm x = 2
d/ \(\sqrt{x^4}=7\Leftrightarrow x^2=7\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)
Vậy.................
e/ \(x^2+2\sqrt{13x}=-13\)
ĐK : x ≥ 0
Ta thấy: \(x^2\ge0;2\sqrt{13x}\ge0\)
\(\Rightarrow x^2+2\sqrt{13x}\ge0\)
lại có: -13 < 0
=> Pt vô nghiệm
Giải:
a) \(\sqrt{9x^2}=2x+1\)
\(\Leftrightarrow\sqrt{\left(3x\right)^2}=2x+1\)
\(\Leftrightarrow3x=2x+1\)
\(\Leftrightarrow x=1\)
Vậy ...
b) \(\sqrt{1-4x+4x^2}=5\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)
\(\Leftrightarrow1-2x=5\)
\(\Leftrightarrow-2x=5-1\)
\(\Leftrightarrow x=-2\)
Vậy ...
c) \(\sqrt{x^2+6x+9}=3x+1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x+1\)
\(\Leftrightarrow x+3=3x+1\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
Vậy ...
d) \(\sqrt{x^4}=7\)
\(\Leftrightarrow x^2=7\)
\(\Leftrightarrow x=\pm\sqrt{7}\)
Vậy ...
e) \(x^2+2\sqrt{13}x=-13\) (Sửa đề)
\(\Leftrightarrow x^2+2\sqrt{13}x+13=0\)
\(\Leftrightarrow\left(x+\sqrt{13}\right)^2=0\)
\(\Leftrightarrow x+\sqrt{13}=0\)
\(\Leftrightarrow x=-\sqrt{13}\)
Vậy ...
1.
B = \(\frac{3}{4+\sqrt{13}}+\frac{\sqrt{52}}{2}-3\) = \(\frac{3\left(4-\sqrt{13}\right)}{16-13}+\frac{\sqrt{52}}{2}-3\)
= \(\frac{24-6\sqrt{13}+3\sqrt{52}-18}{6}\) = \(\frac{6}{6}=1\)
\(x-2\sqrt{13x}+13=52\)
\(\left(\sqrt{x}\right)^2-2\sqrt{x}\sqrt{13}+\left(\sqrt{13}\right)^2=52\)
\(\left(\sqrt{x}-\sqrt{13}\right)^2=52\)
\(\sqrt{x}-\sqrt{13}=\sqrt{52}\)
\(\sqrt{x}=\sqrt{52}+\sqrt{13}\)
\(\sqrt{x}=3\sqrt{13}\)
\(x=117\)