\(\sqrt{x-1}+\sqrt{x+1}< 2\sqrt{x},x>1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

Với \(x>1\) ta có

\(\sqrt{x-1}+\sqrt{x+1}< 2\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{x-1}+\sqrt{x+1}\right)^2< \left(2\sqrt{x}\right)^2\)

\(\Leftrightarrow2x+2\sqrt{\left(x-1\right)\left(x+1\right)}< 4x\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}< x\)

\(\Leftrightarrow x^2-1< x^2\) (luôn đúng)

Vậy với \(x>1\) thì \(\sqrt{x-1}+\sqrt{x+1}< 2\sqrt{x}\) (đpcm)

25 tháng 6 2019
https://i.imgur.com/nw0atWX.jpg
25 tháng 6 2019

bạn trả lời nốt mấy câu còn lại đi

27 tháng 6 2017

đúng rồi bạn nhé

27 tháng 6 2017

Tacó \(\Delta\)=(-7)2-4x1x2=41>0 =>\(\sqrt{_{ }x1}\)=\(\dfrac{7+\sqrt{41}}{2}\)=>\(_{x1}\)=\(\dfrac{\left(7+\sqrt{41}\right)^2}{4}\)=\(\dfrac{45+7\sqrt{41}}{2}\) =>\(\sqrt{_{ }x2}\)=\(\dfrac{7-\sqrt{41}}{2}\)=>\(_{x_2}\)=\(\dfrac{\left(7-\sqrt{41^{ }}\right)^2}{4}\)=\(\dfrac{45-7\sqrt{41}}{2}\) so sánh với điều kiện X>_0

30 tháng 8 2017

Đầu tiên CM BDT :

\(1+x^3+y^3\ge xy"x+y+z"\)

\(\Leftrightarrow x^3+y^3\ge xy"x+y"\)" do \(xyz=1\)"

\(\Leftrightarrow"x+y""x^2+y^2-xy"-xy"x+y"\ge0\)

\(\Leftrightarrow"x+y""x-y"^2\ge0\)

BDT luôn đúng theo gt 

\(\Rightarrow\sqrt{"1+x^3+y^3"}\ge\sqrt{xy"x+y+z"}\)

\(\Rightarrow\sqrt{\frac{"1+x^3+y^3}{xy}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)

Tương tự

\(\Rightarrow\sqrt{\frac{"1+z^3+y^3}{zy}}\ge\sqrt{\frac{"x+y+z"}{zy}}\)

\(\sqrt{\frac{"1+x^3+y^3"}{xz}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)

\(\Rightarrow VT\ge\sqrt{"x+y+z"}.\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)

AD BDT Cauchy cho các số > 0

\(x+y+z\ge3\)\(\sqrt[3]{xyz}=3\)

\(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\ge\frac{3}{\sqrt[3]{xyz}}=3\)

\(\Rightarrow VT\ge\sqrt{3}.3=3\sqrt{3}=VP\) 

\(\Rightarrow VT\ge VP\)

\(\Rightarrow DPCM\)

Vậy Dấu \(= khi x=y=z=1\)

P/s: Thay dấu noặc kép thành ngọc đơn nha, Ko chắc đâu

27 tháng 2 2022

Trả lời:

a, \(P=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\left(ĐK:x>0;x\ne1\right)\)

\(=\left(\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(x+\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(x+2\sqrt{x}-\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left[\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)\right]\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\) (đpcm)

b, \(2P=2\sqrt{x}+5\Leftrightarrow\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}}=2\sqrt{x}+5\) \(\left(ĐK:x>0\right)\)

\(\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\)

\(\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=\frac{2x}{\sqrt{x}}+\frac{5\sqrt{x}}{\sqrt{x}}\)

\(\Rightarrow2\sqrt{x}+2=2x+5\sqrt{x}\)

\(\Leftrightarrow2x+3\sqrt{x}-2=0\)

\(\Leftrightarrow2x+4\sqrt{x}-\sqrt{x}-2=0\)

\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=0\\2\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-2\left(voli\right)\\2\sqrt{x}=1\end{cases}\Leftrightarrow}\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\left(tm\right)}\)

Vậy x = 1/4 là giá trị cần tìm.

10 tháng 7 2019

\(3,\)Áp dụng bđt Mincopski \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)hai lần có

\(VT\ge\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{yz}+\sqrt{zx}\right)^2}+\sqrt{z+xy}\)

       \(\ge\sqrt{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)

       \(=\sqrt{x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)

       \(=\sqrt{1+2t+t^2}\left(t=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
        \(=\sqrt{\left(t+1\right)^2}=t+1=VP\left(Đpcm\right)\)

10 tháng 7 2019

\(2,\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{a}.\sqrt{b}}}=\sqrt{\sqrt{ab}}\left(đpcm\right)\)

7 tháng 7 2017

a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)

b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)

=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)

\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)

7 tháng 7 2017

cậu ơi câu c đâu ạ??

20 tháng 6 2016

chuyển về rồi binh phương 2 vế để mất căn

minh kgong ghi duoc la may minh da co loi