Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
gọi q là nhiệt dung của nước
c là nhiệt dung của viên bi bằng đồng
(nhiệt dung là mC)
khi thả viên bi thứ nhất:
Qtỏa=Qthu
\(\Leftrightarrow c\left(t_1-t\right)=q\left(t-t^0\right)\)
\(\Leftrightarrow c\left(90-20\right)=q\left(20-t^0\right)\)
\(\Leftrightarrow70c=q\left(20-t^0\right)\)
\(\Rightarrow q=\frac{70c}{20-t^0}\)
khi bỏ viên bi thứ hai vào:
Qtỏa=Qthu
\(\Leftrightarrow c\left(t_1-t'\right)=q\left(t'-t\right)+c\left(t'-t\right)\)
\(\Leftrightarrow c\left(90-25\right)=q\left(25-20\right)+c\left(25-20\right)\)
\(\Leftrightarrow65c=5q+5c\)
\(\Leftrightarrow65c=\frac{5.70c}{20-t^0}+5c\)
\(\Leftrightarrow60c=\frac{350c}{20-t^0}\)
\(\Leftrightarrow60=\frac{350}{20-t^0}\Rightarrow t^0=\frac{85}{6}\approx14,2\)
pn ơi cho t hỏi khi thả viên bi thứ nhất thì Q thu là Q nào
còn khi thả viên bi thứ 2 thì t' là j , Q tỏa , Q thu là gì
Gọi \(m\) là khối lượng nước rót cần tìm
Lần thứ nhất :\(m.c.\left(t-t_1\right)=m_2.c.\left(t_2-t\right)\)\(\Rightarrow m\left(t-20\right)=4.\left(60-t\right)\)\(\Rightarrow m=\frac{4.\left(60-t\right)}{t-20}\left(1\right)\)
Lần thứ hai :
\(m.c\left(t-t'\right)=\left(m_1-m\right).c\left(t'-t_1\right)\)
\(\Rightarrow m.\left(t-21,5\right)=\left(2-m\right).\left(21,5-20\right)\)
\(\Rightarrow m\left(t-21,5\right)=\left(2-m\right).1,5\left(2\right)\)
Thay thế (1) vào (2) :
Ta được : \(t=59,25^0C\left(3\right)\)
Thay thế (3) vào (1) ta được:
\(m=0,076\left(kg\right)\)
m₁ = 2kg
t₁ = 20ºC
m₂ = 4kg
t₂ = 60ºC
t₁' = 21,5ºC
gọi c là nhiệt dung riêng của nước
khi rót lần thứ nhất thì m(kg) nước ở t₁ = 20ºC thu nhiệt, nước bình 2 tỏa nhiệt
nhiệt độ cân bằng là t₂' (ºC) với 20 < t₂' < 60
ta có Phương trình cân bằng nhiệt:
Qthu = Qtỏa
cm(t₂'-t₁) = cm₂(t₂-t₂')
m(t₂'-20) = 4(60-t₂') (1)
khi rót lần thứ 2 về bình 1 một lượng nước là m (kg) nước thì m (kg) nước ở t₂' > 20ºC = t₁ nên m(kg) nước tỏa nhiệt, nước trong bình m₁ thu nhiệt, nhiệt độ cân bằng là t₁' = 21,5ºC
* lượng nước trong bình m₁ bây h là m₁ - m
ta có phương trình cân bằng nhiệt:
Qthu = Qtỏa
cm₁(t₁'-t₁) = cm(t₂'-t₁')
(2-m)(21,5 - 20) = m(t₂' - 21,5)
(2-m)1,5 = m(t₂' - 21,5)
m(t₂' - 21,5) = 1,5(2-m)
mt₂' - 21,5m = 3 - 1,5m
mt₂' - 20m = 3
m(t₂'-20) = 3 (2)
từ (1) và (2) ta có hệ:
[ m(t₂'-20) = 4(60-t₂')
[ m(t₂'-20) = 3 (2)
ta đc:
4(60-t₂') = 3
240 - 4t₂' = 3
=> 4t₂ = 237
=> t₂ = 59,25 (ºC)
=> m = 3/(t₂' - 20) = 3/(59,25 - 20)
m ~ 0,07 (kg) = 70 g
lần rót thứ 2: rót m = 0,07 kg từ bình 1 sang bình 2
bình 2 đang có 2kg nước ở t₂' = 59,25ºC
m (kg) nước ở t₁' = 21,5ºC
vậy nước bình 2 tỏa nhiệt, m kg nước thu nhiệt
nhiệt độ cân bằng là T ºC vs 21,5 < T < 59,25
phương trình cân bằng nhiệt:
Qthu = Qtỏa
cm(T-t₁') = cm₂(t₂'-T)
0,07.(T - 21,5) = 4(59,25-T)
0,07T - 1,505 = 237 - 4T
4,007T = 238,505
=> T = 59,5 (ºC)
a/ Giả sử khi rót lượng nước m từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.(t - t1) = m2.(t2 - t) (1)
Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t' = 21,950C và lượng nước trong bình 1 lúc này chỉ còn (m1 - m) nên ta có phương trình cân bằng:
m.(t - t') = (m1 - m).(t' - t1) (2)
Từ (1) và (2) ta có pt sau:
m2.(t2 - t) = m1.(t' - t1)
\(t=\frac{m_2t_2\left(t'-t_1\right)}{m_2}\) (3)
Thay (3) vào (2) tính toán ta rút phương trình sau:
\(m=\frac{m_1m_2\left(t'-t_1\right)}{m_2\left(t_2-t_1\right)-m_1\left(t'-t_1\right)}\) (4)
Thay số vào (3) và (4) ta tìm được: t = 590C và m = 0,1 Kg.
b/ Lúc này nhiệt độ của bình 1 và bình 2 lần lượt là 21,950C và 590C bây giờ ta thực hiện rót 0,1Kg nước từ bình 1 sang bình 2 thì ta có thể viết được phương trình sau:
m.(T2 - t') = m2.(t - T2)
\(T_2=\frac{m_1t'+m_2t}{m+m_2}=58,12^0C\)
Bây giờ ta tiếp tục rót từ bình 2 sang bình 1 ta cũng dễ dàng viết được phương trình sau:
m.(T1 - T2) = (m1 - m).(t - T1)
\(T_1=\frac{mT_2+\left(m_1-m\right)t'}{m_1}=23,76^oC\)
Khi trút một lượng nước m từ B1 sang B2 thì m kg nước tỏa nhiệt để hạ nhiệt độ từ t1 (t độ đó) xuống t3, m2 kg nước thu nhiệt để tăng nhiệt độ từ t2 đến t3.
Do nhiệt hao phí không đáng kể ( câu này phải lập luận) có phương trình cân bằng nhiệt
Qtỏa = Qthu
<=> m(t1 - t3) = m2(t3 - t2) (đã rút gọn Cn)
<=> m(40- t3) = 1( t3-20)
<=> m= (t3-20)/(40-t3) (*)
Lúc này ở B1 còn (m1-m) kg nước có nhiệt độ t1=40, ở B2 có ( m2+m) kg nước có nhiệt độ t3
Khi trút một lượng nước m từ B2 về B1 thì (m1-m) kg nước tỏa nhiệt để hạ nhiệt độ từ t1 xuống 38 độ, m kg nước thu nhiệt để tăng nhiệt độ từ t3 lên 38 độ.
(lập luận như trên) có phương trình cần bằng nhiệt
Qtỏa = Q thu
<=>(m1-m)(t1-38) = m(38 - t3)
<=>(2-m)2 = m(38-t3)
<=>4-2m = m(38-t3)
<=>m(38 -t3 +2) =4
<=>m= 4/(40 -t3) (~)
Từ (*) và (~) ta có
t3 -20 = 4
<=>t3 = 24
Suy ra nhiệt độ cân bằng ở bình 2 là 24 độ
Thay t3 = 24 độ vào một trong hai phương trình trên sẽ tìm được m = 0.25 kg
Xét cả quá trình :
Nhiệt lượn bình 1 tỏa ra :
\(Q=m_1.C.2=16800J\)
Nhiệt lượng này truyền cho bình 2.
\(Q=m_2.C.\left(t-20\right)\)
Xét lần trút từ bình 1 sang bình 2.
\(mC\left(40-24\right)=m_2C\left(24-20\right)\)
Tính được \(0,66666kg\)
bài 1:
ta có phương trình cân bằng nhiệt
Qtỏa=Qthu
\(\Leftrightarrow m_1C_1\left(t_1-t\right)=m_2C_2\left(t-t_2\right)\)
mà hai chất đều là nước nên hai C bằng nhau nên:
\(m_1\left(100-30\right)=m_2\left(30-10\right)\Leftrightarrow70m_1=20m_2\)
mà m1+m2=27kg \(\Rightarrow m_2=27-m_1\)
vì vậy nên ta có;
70m1=20(27-m1)
giải phương trình ta có :
m1=6kg \(\Rightarrow\) m2=21kg
bài 2:
gọi m1,m2,m3,m4 lần lượt là khối lượng của nhôm,sắt,đồng và nước
t1,t2,t3,t4 lần lượt là nhiệt độ của nhôm,sắt,đồng và nước
ta có phương trình cân bằng nhiệt:
Qtỏa=Qthu
\(\Leftrightarrow Q_1+Q_2=Q_3+Q_4\)
\(\Leftrightarrow m_1C_1\left(t_1-t\right)+m_2C_2\left(t_2-t\right)=m_3C_3\left(t-t_3\right)+m_4C_4\left(t-t_4\right)\)
\(\Leftrightarrow880m_1\left(200-20\right)+460m_2\left(200-20\right)=380\cdot0.2\left(20-10\right)+4200\cdot2\cdot\left(20-10\right)\)
\(\Leftrightarrow158400m_1+82800m_2=84760\)
mà m1+m2=0.9\(\Rightarrow m_2=0.9-m_1\)nên:
158400m1+ 82800(0.9-m1)=84760
giải phương trình ta có m1=0.14kg\(\Rightarrow m_2=0.75kg\)
bài 3:
ta có phương trình cân bằng nhiệt:
Qtỏa=Qthu
\(\Leftrightarrow mC\left(t_1-t\right)=mC\left(t-t_2\right)\)
mà t1=2t2
\(\Rightarrow2t_2-30=30-t_2\)
giải phương trình ta có t2=20*C \(\Rightarrow t_1=40\)*C
bài 1:
ta có phương trình cân bằng nhiệt
Qtỏa=Qthu
⇔m1C1(t1−t)=m2C2(t−t2)⇔m1C1(t1−t)=m2C2(t−t2)
mà hai chất đều là nước nên hai C bằng nhau nên:
m1(100−30)=m2(30−10)⇔70m1=20m2m1(100−30)=m2(30−10)⇔70m1=20m2
mà m1+m2=27kg ⇒m2=27−m1⇒m2=27−m1
vì vậy nên ta có;
70m1=20(27-m1)
giải phương trình ta có :
m1=6kg ⇒⇒ m2=21kg
bài 2:
gọi m1,m2,m3,m4 lần lượt là khối lượng của nhôm,sắt,đồng và nước
t1,t2,t3,t4 lần lượt là nhiệt độ của nhôm,sắt,đồng và nước
ta có phương trình cân bằng nhiệt:
Qtỏa=Qthu
⇔Q1+Q2=Q3+Q4⇔Q1+Q2=Q3+Q4
⇔m1C1(t1−t)+
Gọi khối lượng nước rót sang là m ; nhiệt độ cân bằng lần 1 là t3 , lần 2 là t4 (0 < m < 4 ; t4 > t3)
Rót m lượng nước từ 1 sang 2 => lượng nước m tỏa nhiệt hạ từ 68oC đến t3oC ; 5 kg nước bình 2 thu nhiệt tăng
từ 20oC lên toC
Phương trình cân bằng nhiệt :
m.c.(68-t3) = 5.c.(t3 - 20)
=> m.(68-t3) = 5.(t3 - 20)
=> 68m - mt3 = 5t3 - 100 (1)
Rót m lượng nước từ bình 2 sang bình 1 sau khi cân bằng nhệt, lượng nước m thu nhiệt tăng từ t3 oC lên t4 oC ; lượng nước
còn lại trong bình 1 tỏa nhiệt hạ từ 68oC xuống t4oC
Phương trình cân bằng nhiệt
m.c.(t4 - t3) = (4 - m).c(68 - t4)
=> m.(t4 - t3) = (4 - m)(68 - t4)
=> -mt3 = 272 - 4t4 - 68m
=> 68m - mt3 = 272 - 4t4 (2)
Từ (1)(2) => 272 - 4t4 = 5t3 - 100
<=> 372 - 4(t4 - t3) = 9t3
<=> t3 > 34,2 (Vì t4 - t3 < 16)
Khi đó 5(t3 - 20) > 71
=> m(68 - t3) > 71
=> m > 2,1
Vậy 2,1 < m < 4
*Thả vào bình 1:
\(=>Qtoa\left(sat\right)1=m460.\left(t-4,2\right)\left(J\right)\)
\(=>Qthu\left(nuoc\right)1=5.4200.4,2=88200\left(J\right)\)
\(=>460m\left(t-4,2\right)=88200\left(1\right)\)
*thả vào bình 2:
\(=>Qtoa\left(sat\right)2=m.460\left(t-28,9\right)\left(J\right)\)
\(=>Qthu\left(nuoc\right)2=4.4200.\left(28,9-25\right)=65520\left(J\right)\)
\(=>460m\left(t-28,9\right)=65520\left(2\right)\)
(1)(2)=>hệ pt: \(\left\{{}\begin{matrix}460m\left(t-4,2\right)=88200\\460m\left(t-28,9\right)=65520\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}460mt-1932m=88200\\460mt-13294m=65520\end{matrix}\right.\)
\(=>11362m=22680=>m\approx2kg\left(3\right)\)
thế(3) vào(1)\(=>460.2\left(t-4,2\right)=88200=>t=100^oC\)
Gọi nhiệt độ bình thứ nhất sau khi đã cân bằng là \(t_1^oC\).
Phương trình cân bằng nhiệt sau khi rót lần thứ nhất:
\(m\cdot C\cdot\left(40-t_1\right)=3\cdot C\cdot\left(t_1-20\right)J\)
Phương trình cân bằng nhiệt sau khi rót lần thứ hai:
\(\left(4-m\right)C\cdot\left(38-40\right)=m\cdot C\cdot\left(t_1-38\right)J\)
\(\Rightarrow\left\{{}\begin{matrix}m\cdot\left(40-t_1\right)=3\left(t_1-20\right)\\\left(4-m\right)\cdot\left(38-40\right)=m\cdot\left(t_1-38\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}40m-mt_1=3t_1-60\\2m-8=mt_1-38m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}40m=mt_1+3t_1-60\\40m=8+mt_1\end{matrix}\right.\)
\(\Rightarrow mt_1+3t_1-60=8+mt_1\Rightarrow t_1=22,67^oC\)
\(\Rightarrow m=\dfrac{3\left(t_1-20\right)}{40-t_1}=\dfrac{3\left(22,67-20\right)}{40-22,67}=0,4622kg=462,2g\)
a) Khi rót m (kg) nước từ bình 1 sang bình 2 thì nước bình 1 thu nhiệt lượng và nước bình 2 tỏa nhiệt lượng những nhiệt lượng đó là:
\(Q_1=m.c.\left(t'-20\right);Q_2=m_2.c\left(60-t'\right)\)
Cân bằng nhiệt: \(Q_1=Q_2\Rightarrow m.c.\left(t'-20\right)=m_2.c.\left(60-t'\right)\Rightarrow m.t'-20m=60.8-8t'\Rightarrow t'\left(m+8\right)-20m=480\Rightarrow t'=\dfrac{480+20m}{m+8}\left(1\right)\)
Khi rót m (kg) nước từ bình 2 sang bình 1 thì nước ở bình 1 thu nhiệt lượng và nước bình 2 tỏa nhiệt lượng, lúc này bình 1 đã rót đi m nên sẽ còn m1 - m (kg) nước, lúc cân bằng thì nước bình 1 có nhiệt độ là 22oC:
\(Q_1'=\left(m_1-m\right).c.\left(22-20\right);Q_2=m.c.\left(t'-22\right)\)
Cân bằng nhiệt: \(Q_1'=Q_2'\Rightarrow\left(m_1-m\right).c.\left(22-20\right)=m.c.\left(t'-22\right)\Rightarrow\left(4-m\right).2=m.t'-22m\Rightarrow8=m.t'-20m\left(2\right)\)
Thay (1) vào (2) ta được: \(8=\dfrac{m\left(480+20m\right)}{m+8}-20\) ta quy đồng với m+8: \(240m+20m^2-20m^2-160m=8m+64\Rightarrow72m=64\Rightarrow m\approx0,889\left(kg\right)\)
Thay m và (1) ta được: \(t'=\dfrac{480+20.0,889}{0,889+8}\approx56\left(^oC\right)\)
b) Sau khi kết thúc lần rót 1: nhiệt độ nước bình 1 là 22oC, nhiệt độ nước bình 2 là 56oC, khối lượng nước ở bình 2 vẫn là m2 vì đã đổ vào và rót ra. Tiếp tục rót nước từ bình 1 sang bình 2 thì nước ở bình 1 thu nhiệt, nước ở bình 2 tỏa nhiệt, gọi t là nhiệt độ khi cân bằng:
\(Q_1=m.c.\left(t-22\right);Q_2=m_2.c.\left(56-t\right)\)
Cân bằng nhiệt: \(Q_1=Q_2\Rightarrow m.c.\left(t-22\right)=m_2.c.\left(56-t\right)\)với m = 0,889 thì \(0,889t-19,558=448-8t\Rightarrow8,889t=467,558\Rightarrow t\approx52,6\left(^oC\right)\)
Sau khi rót nước ở bình 1 đổ sang bình 2 thì nhiệt độ ở bình 2 là 52,6oC, nhiệt độ nước ở bình 1 là 22oC, khối lượng nước ở bình 1 là m1 - m (kg), nước bình 1 thu nhiệt và nước bình 2 tỏa nhiệt. Gọi t' là nhiệt độ khi cân bằng nhiệt:
\(Q_1'=\left(m_1-m\right).c.\left(t'-22\right);Q_2'=m.c.\left(52,6-t'\right)\)
Cân bằng nhiệt: \(Q_1'=Q_2'\Rightarrow\left(m_1-m\right).c.\left(t'-22\right)=m.c.\left(52,6-t'\right)\Rightarrow\left(4-0,889\right).\left(t'-22\right)=0,889.\left(52,6-t'\right)\Rightarrow3,111t'-68,442=46,7614-0,889t'\Rightarrow4t'=115,2034\Rightarrow t=28,8\left(^oC\right)\)
Câu 1: Gọi nhiệt dung riêng của nước, trụ (I), trụ (II) lần lược là \(c_0,c_1,c_2\)
Nếu thả khối trụ (I) bằng đồng có khối lượng m, nhiệt độ \(t=100^oC\) vào bình thì khi có cân bằng nhiệt, nhiệt độ của nước trong bình là \(t_1=25^oC\). Ta có phương trình cân bằng nhiệt.
\(m_0c_0\left(20-25\right)+mc_1\left(100-25\right)=0\)
\(\Leftrightarrow m_1c_1=\dfrac{m_0c_0}{15}\left(1\right)\)
Nếu ko thả khối trụ (I) mà thả khối trụ (II) bằng hợp kim có khối lượng là 2m, nhiệt độ là \(t=100^oC\) vào bình thì khi có cân bằng nhiệt, nhiệt độ của nước trong bình là \(t_2=40^oC\). Ta có phương trình cân bằng nhiệt.
\(m_0c_0\left(20-40\right)+2mc_2\left(100-40\right)=0\)
\(\Leftrightarrow mc_2=\dfrac{m_0c_0}{6}\left(2\right)\)
Nếu thả cùng lúc 2 khối trụ (I) và (II) vào bình thì khi có cân bằng nhiệt thì:
\(m_0c_0\left(20-t'\right)+mc_1\left(100-t'\right)+2mc_2\left(100-t'\right)=0\left(3\right)\)
Thế (1), (2) vào (3) ta được:
\(m_0c_0\left(20-t'\right)+\dfrac{m_0c_0}{15}\left(100-t'\right)+\dfrac{m_0c_0}{3}\left(100-t'\right)=0\)
\(\Leftrightarrow7t'=300\)
\(\Leftrightarrow t'=\dfrac{300}{7}\left(^oC\right)\)