K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có : Tam giác ABC vuông tại A

        MB=MC(GT)

-> AM=1/2BC ( t/c đường trung tuyến ứng với cạnh huyền trong tgiac vuông )

#Hoctot

7 tháng 1 2021

Trên tia đối của tia AM lấy D sao cho AM=MD chứng minh tam giác BMA =tam giác CMD suy ra BA=CD và góc BAM=góc MDC mà 2 góc trên nằm ở vị trí so le trong nên AB song song với CD mà AB vuông góc với AC suy ra CD vuông góc với AC chứng minh tam giác BCA=tam giác DAC suy ra BC=AD mà AM=1/2AD suy ra AM=1/2BC

2 tháng 1 2016

kẻ tia đối của tia MA và bằng nó là ra

2 tháng 1 2016

Gọi H là trung điểm của AC. Ta chứng minh được: MH là đường trung bình của tam giác ABC. Suy ra: MH song song với AB. => MH vuông góc với AC ( vì AB vuông góc với AC)

Xét tam giác AMC có MH vừa là đường cao, vừa là đường trung tuyến ứng với AC nên tam giác Amc cân tại M. => AM=MC (1)

Vì tam giác AMC cân tại M nên góc MAC = góc MCA. Ta có: MAC+BAM=90 và ACM+ABC=90 mà MAC=MCA ( chứng minh trên).

=> BAM=ABC => tam giác ABM cân tại M => MA=MB (2)

Từ (1) và (2) => AM=1/2BC

1 tháng 8 2019

#)Giải : (Hình tự vẽ lười lắm òi)

Vì \(AB//CD\Rightarrow\widehat{BAC}+\widehat{ACD}=180^o=90^o+\widehat{ACD}=180^o\Rightarrow\widehat{ACD}=90^o\)

Ta có : \(\widehat{BAC}=\widehat{ACD}\)

\(AB=CD\left(c/m\Delta ABM=\Delta CDM\right)\)

AC là cạnh chung 

\(\Rightarrow\Delta ABC=\Delta ACD\left(c.g.c\right)\)

\(\Rightarrow AD=BC\)

Mà \(AM=\frac{1}{2}AD\Rightarrow AM=\frac{1}{2}BC\)

1 tháng 8 2019

A B C D M

M là trung điểm AD => AM = 1/2 AD (1)

                                và AM = MD

Xét ∆AMB và ∆AMC có :

AM = MD (cmt)

\(\widehat{AMB}=\widehat{AMC}\)( đối đỉnh)

MB = MC (M là trung điểm BC)

do đó ∆AMB = ∆AMC (c-g-c)

=> AB = AC và \(\widehat{B_1}=\widehat{C_1}\)

Mà \(\widehat{B_1};\widehat{C_1}\)ở vị trí so le trong

=> AB // CD

=> \(\widehat{BAC}+\widehat{ACD}=180^o\)( trong cùng phía)

Mà \(\widehat{BAC}=90^o\Rightarrow\widehat{ACD}=90^o\Rightarrow\widehat{BAC}=\widehat{ACD}\)

Xét ∆ABC và ∆CDA có :

AB = AC (cmt)

\(\widehat{BAC}=\widehat{ACD}\)

AC chung

do đó : ∆ABC = ∆CDA

=> BC = AD (2)

Từ (1),(2) => đpcm