\(A=-\left|x^2+1\right|-5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

Ta thấy:\(-\left|x^2+1\right|\le0\)

\(\Rightarrow-\left|x^2+1\right|\le-5\)

\(\Rightarrow A\ge-5\)

Vậy MaxA=-5

11 tháng 9 2016

Ta có : \(x^2\ge0\)

\(\Rightarrow x^2+1\ge1\)

\(\Rightarrow\left|x^2+1\right|\ge1\)

\(\Rightarrow-\left|x^2+1\right|\le1\)

\(\Rightarrow-\left|x^2+1\right|-5\le-5\)

\(\Rightarrow A\le-5\)

Dấu " = " xảy ra khi cà chỉ khi : \(x^2=0\)

                                                   \(\Leftrightarrow x=0\)

Vậy \(Max_A=-5\) khi và chỉ khi \(x=0\)

 

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

19 tháng 8 2016

1) Tìm giá trị nhỏ nhất của :

\(A=\left|x-2\right|+5\)

Ta có: \(\left|x-2\right|\ge0\)Với mọi x

\(\Rightarrow\left|x-2\right|+5\ge5\)

Vậy Min A=5 khi và chỉ khi x=2

2) Tìm giá trị lớn nhất của :

\(B=12-\left|x+4\right|\)

\(-\left|x+4\right|\le0\)Với mọi x

\(\Rightarrow12-\left|x+4\right|\le12\)

Vậy Max B=12 khi và chỉ khi x=-4

19 tháng 8 2016

1,vì \(\left|x-2\right|\ge0vớimọix\)

\(\Rightarrow\left|x-2\right|+5\ge5\)với mọi x

\(\Rightarrow A\ge5vớimọix\)

vậy GTNN của A là 5 khi x=2

2,vi \(\left|x+4\right|\ge0vớimọix\)

\(\Rightarrow-\left|x+4\right|\le0vớimọix\)

\(\Rightarrow12-\left|x+4\right|\le12vớimọix\)

\(\Rightarrow A\le12vớimọix\)

vay GTLN của A la 12 khi x=-4

17 tháng 6 2016

a)Ta thấy:

\(-\left|\frac{1}{3}x+2\right|\le0\)

\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)

\(\Rightarrow B\le5\)

Dấu "=" xảy ra khi x=-6

Vậy MaxB=5<=>x=-6

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:

\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)

Vậy MinC=2<=>x=6 hoặc -10

9 tháng 7 2016
  • Vì \(\left|x-\frac{1}{2}\right|\ge0\)

=>\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\ge\frac{3}{8}\)

A đạt giá trị nhỏ nhất <=> \(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|=\frac{3}{8}\)

=>\(\left|x-\frac{1}{2}\right|=0\)

=>\(x-\frac{1}{2}=0\)

=>x=\(\frac{1}{2}\)

Vậy A đạt giá trị nhỏ nhất là \(\frac{3}{8}\) khi x=\(\frac{1}{2}\)

  • Vì \(\left|2x+4\right|\ge0\)

=>\(B=\frac{6}{5}-\left|2x+4\right|\le\frac{6}{5}\)

B đạt giá trị lớn nhất <=> \(B=\frac{6}{5}-\left|2x+4\right|=\frac{6}{5}\)

<=>|2x+4|=0

<=>2x+4=0

<=>2x=-4

<=>x=-2

Vậy B đạt giá trị lớn nhất là \(\frac{6}{5}\) khi x=-2

8 tháng 7 2016

a. A = 5.(x - 2)2 + 1

Ta có: (x - 2)\(\ge\)0 => 5.(x - 2)2 \(\ge\)0 => 5.(x - 2)2 + 1 \(\ge\)1

Do đó A có GTNN là 1

<=> x - 2 = 0

<=> x = 2

b. B = 4 - (1/2 - x)2

Ta có: (1/2 - x)2 \(\ge\)0

=> 4 - (1/2 - x)2 \(\le\)4

Do đó B có GTLN là 4

<=> 1/2 - x = 0

<=> x = 1/2

19 tháng 2 2017

a.

Ta có:

x - 2 \(\ge\)2

=> 5 - (x - 2) \(\ge\)5

=> GTLN của biểu thức là 5, dấu bằng xảy ra khi

(x - 2)2 = 0

=> x - 2 = 0

=> x = 2

b, c tương tự