K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

a) ĐKXĐ: \(x;y>0\)  

 Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

\(\Rightarrow\frac{4y}{4xy}+\frac{4x}{4xy}=\frac{xy}{4xy}\)

\(\Rightarrow4x+4y-xy=0\)

\(\Rightarrow x\left(4-y\right)=-4y\)

\(\Rightarrow x=\frac{-4y}{4-y}=\frac{-4\left(y-4\right)-16}{-\left(y-4\right)}\)

\(\Rightarrow x=4-\frac{16}{4-y}\)

Để x nguyên dương =>\(\hept{\begin{cases}\frac{16}{4-y}< 0\\\left(4-y\right)\inƯ\left(16\right)\end{cases}}\)

\(\Rightarrow4-y\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

Tìm nốt y và thay vào tìm ra x

5 tháng 9 2019

a/ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

Không mất tính tổng quát giả sử: \(x\ge y\)

\(\frac{1}{4}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Leftrightarrow0< y\le8\)

\(\Rightarrow y=\left\{1;2;3;4;5;6;7;8\right\}\)làm nốt

17 tháng 1 2018

Ta có:

\(xy+yz+zx=4xyz\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)

\(P=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)

\(\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{2}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

\(\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

17 tháng 1 2018

áp dụng cô si sháp cho 4 số ta được :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)  Luôn đúng , ( tự chứng minh )

\(\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\ge\frac{1}{a+b+c+d}\) luôn luôn đúng

áp dụng vào  P ta được như sau

\(\frac{1}{x+x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) luôn đúng :))

\(\frac{1}{x+y+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+y+z+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

Cộng tất cả vào ta được

\(P\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)\Leftrightarrow P\le\frac{1}{4}\left(x+y+z\right)\)

Thèo đề \(xy+yz+xz=4xyz\Leftrightarrow xy+yz+xz=xyz+xyz+xyz+xyz\)

Tao cũng éo hiểu tại sao nó = nhau được

1 đề sai  , 2 tao sai thế thôi

AH
Akai Haruma
Giáo viên
27 tháng 6 2020

Lời giải:

Do $x,y,z\in [0;1]$ nên $1+yz; 1+xz; 1+xy\geq 1+xyz$

$\Rightarrow \frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{1+xy}\leq \frac{x+y+z}{1+xyz}$

Ta cần chứng minh: $\frac{x+y+z}{1+xyz}\leq 2$

$\Leftrightarrow x+y+z\leq 2+2xyz(*)$

Thật vậy:

$x,y\in [0;1]\Rightarrow (x-1)(y-1)\geq 0$

$\Leftrightarrow xy+1\geq x+y\Rightarrow xy+z+1\geq x+y+z(1)$
Mà:

$xy+z+1-(2+2xyz)=xy+z-2xyz-1=xy(1-z)-(1-z)-xyz=(xy-1)(1-z)-xyz\leq 0$ do $0\leq x,y,z\leq 1$)

$\Rightarrow xy+z+1\leq 2+2xyz(2)$

Từ $(1);(2)\Rightarrow x+y+z\leq 2+2xyz$

BĐT $(*)$ đc chứng minh nên ta có đpcm.

Dấu "=" xảy ra khi $(x,y,z)=(1,1,0)$ và hoán vị

1 tháng 7 2020

Trâu bò nhưng bù lại là đơn giản:

\(VP-VT\equiv f\left(x,y,z\right)=f\left(\frac{a}{a+1},\frac{b}{b+1},\frac{c}{c+1}\right)\ge0\)

Bất đẳng thức cuối quy đồng lên sẽ thấy điều hiển nhiên ;)

9 tháng 3 2020

Áp dụng BĐT Cosi cho 2 sô dương ta có: \(x^2+yz\ge2x\sqrt{yz}\)

Tương tự: \(y^2+zx\ge2y\sqrt{zx};z^2+xy\ge2z\sqrt{xy}\)

Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được:

\(\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{zx}}+\frac{1}{2z\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\Leftrightarrow\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{xyz}\le\frac{x+y+z}{xyz}\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)

\(\Leftrightarrow\frac{1}{2}\left(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\right)\ge0\)(luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)

9 tháng 3 2020

Áp dụng BĐT Cosi cho 2 số dương ta có: \(x^2+yz\ge2\sqrt{x^2yz}=2x\sqrt{yz}\)

Tương tự: \(y^2+zx\ge2y\sqrt{zx},z^2+xy\ge2z\sqrt{xy}\)

Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được: 

\(\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{zx}}+\frac{1}{2z\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\Leftrightarrow\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{xyz}\le\frac{x+y+z}{xyz}\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)

\(\Leftrightarrow\frac{1}{2}\left(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\right)\ge0\)(luôn đúng)

Vậy BĐT được chứng minh. Dấu "=" xảy ra khi \(x=y=z\)

Cách 2:

Ta chuẩn hóa xyz=1

BĐT viết lại là \(\frac{x}{x^3+1}+\frac{y}{y^3+1}+\frac{z}{z^3+1}\le\frac{1}{2}\left(x+y+z\right)\)

Ta sử dụng đánh giá

\(x-\frac{2x}{x^3+1}+\frac{3}{2}\ge\frac{9x^2}{2\left(x^2+x+1\right)}\)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(2x^4+3x^2+7x+3\right)}{2\left(x^3+1\right)\left(x^2+x+1\right)}\ge0\)

Do vậy ta cần c/m \(\frac{x^2}{x^2+x+1}+\frac{y^2}{y^2+y+1}+\frac{z^2}{z^2+z+1}\ge1\)

 ta có \(\left(x;y;z\right)\rightarrow\left(\frac{a^2}{bc};\frac{b^2}{ca};\frac{c^2}{ab}\right)\)

BĐT viết lại là \(\frac{a^4}{a^4+a^2bc+\left(bc\right)^2}+\frac{b^4}{b^4+b^2ca+\left(ca\right)^2}+\frac{c^4}{c^4+c^2ab+\left(ab\right)^2}\ge1\)

Theo bđt Cauchy-Schwarz ta có

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+abc\left(a+b+c\right)+\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2}\)

Theo bđt AM-GM ta có

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+2\left(ab\right)^2+2\left(bc\right)^2+2\left(ca\right)^2}=1\)

Dấu "=" xảy ra khi a=b=c=> x=y=z