Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(\frac{x}{5}\right)^2=\frac{x}{5}\cdot\frac{x}{5}=\frac{x}{5}\cdot\frac{y}{7}=\frac{xy}{5\cdot7}=\frac{150}{35}=\frac{30}{7}\)
30/7 ko phải là số chính phương => xem lại đề
Thử lại cách khác :
Đặt \(\frac{x}{5}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
=> xy = 5k . 7k = 35k2 = 150
=> k2 = 150 : 35 = 30/7
=> sai đề
đề là \(x^2-\frac{1}{x^2}\)hay là \(x^2+\frac{1}{x^2}\)vậy? Xem lại đề thử xem!
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
\(\Leftrightarrow\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right);\left(-1;1\right);\left(-1;-1\right)\)
Thay x=1 ; y = 1/2 vào biểu thức \(x^2y^3+xy\)ta được :
\(1^2\frac{1}{2}^2+1.\frac{1}{2}\)= \(1.\frac{1}{4}+1.\frac{1}{2}=\frac{1}{4}+\frac{1}{2}\) \(=\frac{1}{4}+\frac{2}{4}=\frac{3}{4}\)
Vậy gí tringj của biểu thức trên là \(\frac{3}{4}\) tại x= 1 ; y = 1/2
Đúng chưa nhể :)
thay x=1,y=1/2 vào biểu thức,ta có:
\(x^2y^3+xy\)= \(1^3.\left(\begin{cases}1\\2\end{cases}\right)^3\)+ 1.\(\frac{1}{2}\)= 1.\(\frac{1}{8}+\frac{1}{2}=\frac{1}{8}+\frac{4}{8}=\frac{1+4}{8}=\frac{5}{8}\)
vậy giá trị của biểu thức \(x^2y^3+xy\)tại x=1 và y=\(\frac{1}{2}\)là \(\frac{5}{8}\)
xy=x/y =>y2 =1 =>y = -1 (loại y=1)
thay vao ta tinh duoc x = 1/2
vậy x=1/2
y = -1