K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

xy + y2 - x - y

= (xy - x) + (y2-y)

= x(y - 1) + y(y - 1)

= (y - 1)(x + y)

7 tháng 3 2019

\(3x^3+xy=3\)

\(\Leftrightarrow x\left(3x^2+y\right)=3\)

Với x = 1

\(\Rightarrow3x^2+y=3\Leftrightarrow y=0\)

Với x = 3

\(\Rightarrow3.3^2+y=3\)

\(\Leftrightarrow y=3-27=-24\)

Với x = -1

=> 3.(-1)^2+y=3

=>y=0

Với x = -3

=> y = -24

10 tháng 4 2019

Bài 1 dễ thì tự làm

Bài 2

\(y^2+2xy-3x-2=0\Leftrightarrow y^2+2xy+x^2=x^2+3x+2\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)

Vế trái là số chính phương vế phải là tích 2 số nguyên liên tiếp nên 1 trong 2 số x+1 và x+2 phải có 1 số bàng 0

\(\Rightarrow y=-x\)

\(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\y=2\end{cases}}}}\)

Vậy \(\left(x;y\right)=\left(-1;1\right);\left(-2;2\right)\)

22 tháng 12 2019

khó thế

25 tháng 9 2018

\(E=x^2+2xy+y^2-6x-6y+2017\)

\(=\left(x^2+2xy+y^2\right)-\left(6x+6y\right)+2017\)

\(=\left(x+y\right)^2-6\left(x+y\right)+2017\)

\(=\left(x+y\right)\left(x+y-6\right)+2017\)

25 tháng 9 2018

Tính: E = x2 + xy + y2 - 6.x - 6.y +2017 mà

3 tháng 9 2019

\(B=\left(x^2-8x\right)\left(x^2-8x+24\right)\)

Đặt \(x^2-8x+12=t\) ta có:
\(B=\left(t-12\right)\left(t+12\right)=t^2-144\ge-144\)

Dấu "=" xảy ra khi \(t^2=0\Leftrightarrow t=0\Leftrightarrow x^2-8x+12=0\)

\(\Leftrightarrow x^2-2x-6x+12=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\Leftrightarrow x=2;x=6\)

3 tháng 9 2019

\(C=5x^2+9y^2-6xy-12x+13\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-12x+9\right)+4\)

\(=\left(x-3y\right)^2+\left(2x-3\right)^2+4\ge4\)

Dấu "=" xảy ra tại \(x=\frac{3}{2};y=\frac{1}{2}\)

19 tháng 8 2021

a) \(A=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)

         \(=\left(3x^2-6x+3\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-5+20x\)

\(=-30\)

b) \(B=-x\left(x+2\right)^2+\left(2x+1\right)^2+\left(x+3\right)\left(x^2-3x+9\right)-1\)

\(=-x\left(x^2+4x+4\right)+\left(4x^2+4x+1\right)+\left(x^3-3x^2+9x+3x^2-9x+27\right)-1\)

\(=27\)

a: Ta có: \(A=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)

\(=3x^2-6x+3-x^2-2x-1+2x^2-18-4x^2-12x-9-5+20x\)

\(=-30\)

b: Ta có: \(B=-x\left(x+2\right)^2+\left(2x+1\right)^2+\left(x+3\right)\left(x^2-3x+9\right)-1\)

\(=-x^3-4x^2-4x+4x^2+4x+1+x^3+27-1\)

=27

21 tháng 9 2023

c) \(\left(x+\dfrac{y}{x}\right)^3\)

\(=\left(\dfrac{x^2}{x}+\dfrac{y}{x}\right)^3\)

\(=\left(\dfrac{x^2+y}{x}\right)^3\)

\(=\dfrac{x^6+3x^4y+3x^2y^3+y^3}{x^3}\)

f) \(\left(x-\dfrac{1}{2}\right)^3\)

\(=x^3-3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^3\)

\(=x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}\)

h) \(\left(x+\dfrac{y^2}{2}\right)^3\)

\(=\left(\dfrac{2x}{2}+\dfrac{y^2}{2}\right)^3\)

\(=\left(\dfrac{2x+y^2}{2}\right)^3\)

\(=\dfrac{8x^3+12x^2y^2+6xy^4+y^6}{8}\)

k) \(\left(x-\dfrac{1}{3}\right)^3\)

\(=x^3-3\cdot x^2\cdot\dfrac{1}{3}+3\cdot x\cdot\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3\)

\(=x^3-x^2+\dfrac{x}{3}-\dfrac{1}{27}\)

m) \(\left(x+\dfrac{y^2}{3}\right)^3\)

\(=\left(\dfrac{3x}{3}+\dfrac{y^2}{3}\right)^3\)

\(=\left(\dfrac{3x+y^2}{3}\right)^3\)

\(=\dfrac{27x^3+27x^2y^2+9xy^4+y^6}{27}\)

Q) \(2\left(x^2+\dfrac{1}{2}y\right)\left(2x^2-y\right)\)

\(=2\left(2x^4-x^2y+x^2y-\dfrac{1}{2}y^2\right)\)

\(=2\left(2x^4-\dfrac{1}{2}y^2\right)\)

\(=4x^4-y^2\)

2 tháng 4 2021

a) (Bạn tự vẽ hình ạ)

Ta có AD.AB = AE.AC

⇒ \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét \(\Delta ABC\) và \(\Delta AED\) có:

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

\(\widehat{A}:chung\)

⇒ \(\Delta ABC\sim\Delta AED\)   \(\left(c.g.c\right)\)

⇒ DE // BC

2 tháng 4 2021

b) 

A B C M N