K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

bạn tự vẽ hình nha 

a) góc ACB=góc ECN (đối đỉnh)

góc ABC=góc ACB(tam giác ABC cân )

--> góc ABC=góc ECN

xét 2 tam giác BDM và CEN có:

cạnh BD=cạnh EC(gt)
góc BDM=góc CEN(=90độ)

góc MBC=góc ECN(chứng minh trên )

--> 2 tam giác BDM=CEN(g.c.g)

--> DM=EN(2 cạnh tương ứng)

c)xét 2 tam giác AOB và AOC có:

AB=AC(tam giác ABC cân)

góc BAO=góc CAO(tia OA là p.giác của góc A)

cạnh AO chung

--> 2 tam giác AOB=AOC(c.g.c)

3 tháng 8 2016

yon khờ bảo lm giúp phần d mà đỗ thị lan anh 

25 tháng 2 2018

Bài 3 :

A B C H K I

Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K

Ta có :AH + HB = AB 

          AK + KC = AC 

mà AB = AC ( tam giác ABC cân tại A)

=> AH + HB = AK + KC

mà  CH và Bk lần lượt là trung trực của AB ,AC 

=> AH = HB = AK = KC

Xét tam giác AHI và tam giác AKI có 

AHI = AKI = 90

AH = AK ( cmt )

AI : cạnh chung 

=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )

=> ^HAI = ^KAI ( 2 góc tương ứng )

=> AI là tia phân giác của ^A

Vậy AI là tia phân giác của ^A

25 tháng 2 2018

Bài 1 

  A B C D E H K

a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB

Ta có : ^ABC + ^ABD = 180 (kề bù )

           ^ACB + ^ ACE = 180 ( kề bù )

mà ^ABC = ^ACB 

=> ^ABD = ^ ACE 

Xét tam giác ABD và tam giác ACE có :

AB =AC ( tam giác ABc cân tại a )

^ABD = ^ACE ( cmt )

BD = CE ( gt)

=> tm giác ABD = tam giác ACE ( c.g.c)

=> ^ADB = ^AEC ( 2 góc tương ứng ) 

hay ^HDB = ^KEC 

Xét tam giác HBD và tam gisc KEC có :

^DHB = ^EKC = 90 

BD =  CE (gt)

HDB = KEc ( cmt )

=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )

=> HB = Ck ( 2 canh tương ứng )

Vậy HB = Ck

b,Xét tam giác ABH và tam giác ACk có 

AHB = AKC = 90

HB = CK ( cmt )

AB = AC 

=> tam giác ABH = tam giác  ACK ( anh huyền - canh góc vuồng )

Vậy tam giác ABH =tam giác ACK

1:

a: Xét ΔABD vuông tại D và ΔCAE vuông tại E có

AB=CA
góc ABD=góc CAE

=>ΔABD=ΔCAE

b: ΔABD=ΔCAE

=>BD=AE: AD=CE

=>BD-CE=BD-AD=DE

5 tháng 1 2024

loading... a) Xét hai tam giác vuông: ∆ABD và ∆ACE có:

AB = AC (do ∆ABC cân tại A)

∠A chung

⇒ ∆ABD = ∆ACE (cạnh huyền - góc nhọn)

b) Do I là trung điểm của BC (gt)

⇒ IB = IC

Xét ∆ABI và ∆ACI có:

AB = AC (cmt)

AI là cạnh chung

BI = CI (cmt)

⇒ ∆ABI = ∆ACI (c-c-c)

⇒ ∠BAI = ∠CAI (hai góc tương ứng)

⇒ AI là tia phân giác của ∠BAC

c) Do ∆ABI = ∆ACI (cmt)

⇒ ∠AIB = ∠AIC (hai góc tương ứng)

Mà ∠AIB + ∠AIC = 180⁰ (kề bù)

⇒ ∠AIB = ∠AIC = 180⁰ : 2 = 90⁰

⇒ AI ⊥ BC

30 tháng 4 2016

c. 

tg BCK: CD là đường cao

                   là trung tuyến 

sra: tg BCK cân

sra: DBC= DKC(1)

  • xét tg EBC và DCB:

BEC=BDC(=90 độ)

ABC=ACB(tg ABC cân)

BC (cạnh chung)

sra: Tg EBC= DCB(cạnh huyền-góc nhọn)

sra: ECB= DBC(cặp góc tương ứng)(2)

Từ (1) và (2) 

sra: góc ECB=DKC(đfcm)

https://h.vn/hoi-dap/question/168197.html

tham khảo nhé bạn

26 tháng 12 2016

a)XÉt tam giác HBM và tam giác KCM có:

   MB = Mc ( M là TĐ của BC)

   góc BMH = góc CMK ( 2 góc đối đình)

   MK = MH ( gt)

do đó : tam giác HBM = tam giác KCM (c-g-c)

Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.Tết đến tưng bừng, vui mừng làm ToánGiáo viên: Nguyễn Cao Uyển Mib) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB 
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.

Giúp mình với ạ, mik đang cần gấp

1
6 tháng 2 2022

Ai giúp mik với mik đang cần gấp ạ