K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2014

ta có tính chất : nếu a chia hết cho b thì tích của a với bất kì số nào cũng chia hết cho b

2002^2003=2002x2002x2002x...x2002 mà 2002 chia hết cho 2 nên 2002^2003 chia hết cho 2

2003^2004=2003x2003x2003x...x2003 mà 2003 không chia hết cho 2 nên 2003^2004 không chia hết cho 2

vì 2002^2003 chia hết cho 2 và 2003^2004 không chia hết cho 2 nên 2002^2003+2003^2004 không chia hết cho 2

AH
Akai Haruma
Giáo viên
9 tháng 6

Câu 1:

Ta có: $2002\vdots 2\Rightarrow 2002^{2003}\vdots 2$

$2003\not\vdots 2\Rightarrow 2003^{2004}\not\vdots 2$

$\Rightarrow 2002^{2003}+2003^{2004}\not\vdots 2$

 

AH
Akai Haruma
Giáo viên
9 tháng 6

Câu 2:

$3^2\equiv -1\pmod 5$

$\Rightarrow 3^{4n}=(3^2)^{2n}\equiv (-1)^{2n}\equiv 1\pmod 5$

$\Rightarrow 3^{4n}-6\equiv 1-6\equiv 0\pmod 5$

$\Rightarrow 3^{4n}-6\vdots 5$

9 tháng 9 2016

a) Do: 2002 chia hết cho 2 và số tận cùng của lũy thừa có cơ số là 2002 là 2 ; 4 ; 8 ; 6 => 20022003 cũng chia hết cho 2    (1)

Do: 2003 không chia hết cho 2  và số tận cùng của lũy thừa cơ số 2003 là 3 ; 9; 7 ; 1=> 20032004 không chia hết cho 2     (2)

Từ (1) và (2) ta được: 20022003 + 20032004 không chia hết cho 2

b) 34n - 6 = (34)n - 6 = 81n - 6 

Do: Lũy thừa có cơ số là 81 thì có tận cùng là 1  => 81n đồng dư với 1 (mod 5) đồng thời 6 đồng dư với 1 (mod 5)

=>81n - 6 đồng dư với 1 - 1(mod 5) <=> 81n - 6 đồng dư với 0 (mod 5)

=> 81n - 6 chia hết cho 5  => 34n - 6 chia hết cho 5 

c) 20012002 có tận cùng là 1  => 20012002 đồng dư với 1 (mod 10)

=> 20012002 - 1 đồng dư với 1 - 1 (mod 10)  => 20012002 - 1 đồng dư với 0 (mod 10)

=> 20012002 - 1 chia hết cho 10 

2 tháng 8 2016

Vì 2003 là số lè => 20032002 là số lẻ

2005 là số lẻ => 20052004 là số lẻ

=> 20032002 + 20052004 là số chẵn

=> 20032002 + 20052004 chia hết cho 2

3333 + 1111

= (...7) + (...1)

= (...8) không chia hết cho 5

2 tháng 8 2016

Vì 2003 là số lè => 20032002 là số lẻ

2005 là số lẻ => 20052004 là số lẻ

=> 20032002 + 20052004 là số chẵn

=> 20032002 + 20052004 chia hết cho 2

3333 + 1111

= (...7) + (...1)

= (...8) không chia hết cho 5

29 tháng 6 2015

a) Ta có: \(1-\frac{2002}{2003}=\frac{1}{2003}\)

\(1-\frac{2003}{2004}=\frac{1}{2004}\)

Vì \(\frac{1}{2003}>\frac{1}{2004}\)

\(\Rightarrow\frac{2002}{2003}>\frac{2003}{2004}\)

b) Ta có: \(\frac{-2005}{-2004}=\frac{2005}{2004}>1\)

\(\frac{-2002}{2003}

20 tháng 6 2017
$$hêhê