Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)
Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D
Ta có: \(f\left( { - x} \right) = \tan \left( { - x} \right) = - \tan x = - f\left( x \right),\;\forall x\; \in \;D\)
Vậy \(y = \tan x\) là hàm số lẻ.
b)
\(x\) | \( - \frac{\pi }{3}\) | \( - \frac{\pi }{4}\) | \( - \frac{\pi }{6}\) | \(0\) | \(\frac{\pi }{6}\) | \(\frac{\pi }{4}\) | \(\frac{\pi }{3}\) |
\(\tan x\) | \( - \sqrt 3 \) | \( - 1\) | \( - \frac{{\sqrt 3 }}{3}\) | \(0\) | \(\frac{{\sqrt 3 }}{3}\) | \(1\) | \(\sqrt 3 \) |
c) Từ đồ thị trên, ta thấy hàm số \(y = \tan x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\).
a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)
Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D
Ta có: \(f\left( { - x} \right) = \cot \left( { - x} \right) = - \cot x = - f\left( x \right),\;\forall x\; \in \;D\)
Vậy \(y = \cot x\) là hàm số lẻ.
b)
\(x\) | \(\frac{\pi }{6}\) | \(\frac{\pi }{4}\) | \(\frac{\pi }{3}\) | \(\frac{\pi }{2}\) | \(\frac{{2\pi }}{3}\) | \(\frac{{3\pi }}{4}\) | \(\frac{{5\pi }}{6}\) |
\(\cot x\) | \(\sqrt 3 \) | \(1\) | \(\frac{{\sqrt 3 }}{3}\) | \(0\) | \( - \frac{{\sqrt 3 }}{3}\) | \( - 1\) | \( - \sqrt 3 \) |
c) Từ đồ thị trên, ta thấy hàm số \(y = \cot x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và nghịch biến trên mỗi khoảng \(\left( {k\pi ;\pi + k\pi } \right)\).
Lời giải:
a. TXĐ: $D=\mathbb{R}$
Xét $x=3\in D$ thì $-3\in D$
$y(-3)=3^2\sin (-3+3)=0; -y(-3)=0$
$y(3)=3^2\sin 6\neq 0$
Do đó: $y(3)\neq y(-3)$ và $y(3)\neq -y(-3)$ nên hàm không chẵn cũng không lẻ.
b. ĐKXĐ: $D=\mathbb{R}$
Với $x\in D$ thì $-x\in D$
$y(-x)=\sqrt{2-\sin ^2(-3x)}=\sqrt{2-(-\sin 3x)^2}$
$=\sqrt{2-(\sin 3x)^2}=y(x)$
Do đó hàm là hàm chẵn.
a, \(f\left(-x\right)=sin^2\left(-2x\right)+cos\left(-3x\right)=sin^22x+cos3x=f\left(x\right)\)
\(\Rightarrow\) Là hàm số chẵn.
• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).
Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).
• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)
ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)
Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).
Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).
Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1} = \sqrt {1 - 1} = 0 = g\left( 1 \right)\)
Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).
Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).
• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)
Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).
• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)
Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).
a) Hàm số \(f\left( x \right) = {x^2} + \sin x\) có tập xác định là \(\mathbb{R}\).
Hàm số x2 và sinx liên tục trên \(\mathbb{R}\) nên hàm số \(f\left( x \right) = {x^2} + \sin x\) liên tục trên \(\mathbb{R}\).
b) Hàm số \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}.\)
Hàm số \({x^4} - {x^2}\) liên tục trên toàn bộ tập xác định
Hàm số \(\frac{6}{{x - 1}}\) liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)
Vậy hàm số đã cho liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)
c) Hàm số \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ {-4;3} \right\}.\)
Hàm số \(\frac{{2x}}{{x - 3}}\) liên tục trên các khoảng \(\left( {-\infty ;3} \right)\) và \(\left( {3; + \infty } \right).\)
Hàm \(\frac{{x - 1}}{{x + 4}}\) liên tục trên các khoảng \(\left( {-\infty ;-4} \right)\) và \(\left( {-4; + \infty } \right).\)
Vậy hàm số đã cho liên tục trên các khoảng \(\left( {-\infty ;-4} \right)\), \(\left( {-4;3} \right)\), \(\left( {3; + \infty } \right).\)
Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ 0 \right\}\)
Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D
Ta có: \(g\left( { - x} \right) = \frac{1}{{ - x}} = - \frac{1}{x} = - g\left( x \right),\;\forall x\; \in \;D\).
Vậy \(g\left( x \right) = \frac{1}{x}\) là hàm số lẻ