Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
Số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0.
(x;y) chỉ có thể (C;C); (L;L); (C;L); (L;C) vì có 5 số 4 dạng nên tồn tại 2 số cùng một dạng nên tích 2 số này là số chính phương.
Cách 2:
Ta dễ dàng chứng minh được trong 3 số tự nhiên bất kỳ luôn tìm được 2 số bất kỳ mà tổng của chúng chia hết cho 2.
Vì số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0 nên ta luôn chọn được 2 số mà tích của nó là số chính phương.
Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r
\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)
Với a ; b; c \(\in\)N và \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)
Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)
N nhỏ nhất nên \(N=2^2.5.13=260\)
Không đồng thời là số nguyên tố bạn nhé!
Ta đã biết n là số nguyên dương lớn hơn 1. Vậy ta bắt đầu thế số từ số 2.
2^2-1 = 3 ; 2^2+1= 5 ( đều là số nguyên tố )
Ta xét tiếp n là số 3.
2^3-1= 7 ; 2^3 + 1 = 9 ( không đồng thời là số nguyên tố )
Vậy, 2^n-1 và 2^n+ 1 không đồng thời là số nguyên tố vì nếu n là 3 thì 2^3 +1 = 9
Giả sử n là tích của 10 số sau :
a1 x a2 x a3 x a4 x a5 x a6 x a7 x a8 x a9 x a10
Nếu 10 số trên đều có UCLN = 1 thì N có ít ước nguyên dương nhất
Như vậy n sẽ được phân tích dưới dạng thừa số nguyên tố là :
a11 x a21 x a31 x a41 x a51 x a61 x a71 x a81 x a91 x a101
Số ước của n sẽ là ( 1 + 1)(1+1)....(1+1) = 2 x 2 x...x 2 ( 10 lần số 2) = 210 = 1024