K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

Hai đường thẳng song song: AB và CD; AB và A 1 B 1 ; ...

2 tháng 1 2018

Hai đường thẳng cắt nhau và không cùng nằm trong một mặt phẳng : AB và C C 1 ; A A 1  và CD; ...

17 tháng 3 2018

Đường thẳng nằm trong mặt phẳng: AB nằm trong mp( A B B 1 A 1 ); AB và mp(ABCD); .

22 tháng 2 2019

Đường thẳng không có điểm chung với mặt phẳng : AB và mp( C D D 1 C 1 ); AB và mp ( A 1 B 1 C 1 D 1 ); ...

19 tháng 10 2017

Đường thẳng cắt mặt phẳng : A A 1  cắt mp (ABCD) tại A;  A A 1  cắt mp ( A 1 B 1 C 1 D 1 ) tại A 1 ; ...

31 tháng 5 2019

Hai đường thẳng cắt nhau: AD và DC; AD và D D 1 ; B B 1 và BC; ...

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) \(AB = AM + MB = 1 + 2 = 3;AC = AN + NC = 2 + 4 = 6;BC = BP + PC = 2 + 3 = 5\)

 Ta có: \(\frac{{AM}}{{AB}} = \frac{1}{3};\frac{{AN}}{{AC}} = \frac{2}{6} = \frac{1}{3}\).

Vì \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{1}{3}\) nên theo định lí Thales đảo trong tam giác \(ABC\), ta có \(MN//BC\).

Ta có: \(\frac{{CN}}{{CA}} = \frac{4}{6} = \frac{2}{3};\frac{{CP}}{{CB}} = \frac{3}{5}\).

Vì \(\frac{{CN}}{{AC}} \ne \frac{{CP}}{{BC}}\left( {\frac{2}{3} \ne \frac{3}{5}} \right)\) nên theo định lí Thales đảo trong tam giác \(ABC\), ta có \(NP\) không song song với \(BC\).

b) Vì \(\widehat {B''A''O} = \widehat {OA'B'}\) mà hai góc này ở vị trí so le trong nên \(A''B''//A'B'\).

\(OA = OA' + A'A = 2 + 3 = 5;OB = OB' + B'B = 3 + 4,5 = 7,5\)

Ta có: \(\frac{{OA'}}{{OA}} = \frac{2}{5};\frac{{OB'}}{{OB}} = \frac{3}{{7,5}} = \frac{2}{5}\).

Vì \(\frac{{OA'}}{{OA}} = \frac{{OB'}}{{OB}} = \frac{2}{5}\) nên theo định lí Thales đảo trong tam giác \(OAB\), ta có \(A'B'//AB\).

Vì \(\left\{ \begin{array}{l}A'B'//AB\\A'B'//A''B''\end{array} \right. \Rightarrow AB//A''B''\).

24 tháng 8 2019

a) BC // FG ⇒ BC // (EFGH)

CD // HG ⇒ CD // (EFGH)

AD // EH ⇒ AD // (EFGH)

Vậy: ngoài AB, các cạnh song song với mặt phẳng (EFGH) là BC, CD, AD

b) CD // AB ⇒ CD // (ABFE)

và CD // (EFGH) ( theo ý a).

c) Vì AB // HG, AB = HG ⇒ ABGH là hình bình hành

 

⇒ AH // BG

⇒ AH // (BCGF)

Vậy mặt phẳng song song với đường thẳng AH là mặt phẳng (BCGF).

2 tháng 6 2019

a) BC // FG ⇒ BC // (EFGH)

CD // HG ⇒ CD // (EFGH)

AD // EH ⇒ AD // (EFGH)

Vậy: ngoài AB, các cạnh song song với mặt phẳng (EFGH) là BC, CD, AD

b) CD // AB ⇒ CD // (ABFE)

và CD // (EFGH) ( theo ý a).

c) Vì AB // HG, AB = HG ⇒ ABGH là hình bình hành

 

⇒ AH // BG

⇒ AH // (BCGF)

Vậy mặt phẳng song song với đường thẳng AH là mặt phẳng (BCGF).