Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(f\left(-x\right)=\left(-x\right)^2=x^2\)
Vậy: Hàm số này chẵn
TXĐ:\(D=R\backslash\left\{0\right\}\)
\(\Rightarrow\forall x\in D\) thì \(-x\in D\)
\(f\left(-x\right)=\dfrac{-\left(-x\right)^4+\left(-x\right)^2+1}{3\left(-x\right)}=-\dfrac{-x^4+x^2+1}{3x}=-f\left(x\right)\)
Hàm lẻ.
a: \(f\left(-x\right)=-2\cdot\left(-x\right)^3+3\cdot\left(-x\right)\)
\(=2x^3-3x\)
\(=-\left(-2x^3+3x\right)\)
=-f(x)
Vậy: f(x) là hàm số lẻ
c: TXĐ: D=[-2;2]
Nếu \(x\in D\Leftrightarrow-x\in D\)
\(f\left(-x\right)=\sqrt{6-3\cdot\left(-x\right)}-\sqrt{6+3\cdot\left(-x\right)}\)
\(=\sqrt{6+3x}-\sqrt{6-3x}\)
\(=-f\left(x\right)\)
Vậy: f(x) là hàm số lẻ
\(TXD\) \(D=R\backslash\left\{0\right\}\) là tập đối xứng.
\(\forall x\in D\Rightarrow-x\in D\)
Có \(f\left(-x\right)=\dfrac{\left(-x\right)^2+1}{\left|2\left(-x\right)+1\right|+\left|2\left(-x\right)-1\right|}\)
\(=\dfrac{x^2+1}{\left|1-2x\right|+\left|-2x-1\right|}\)
\(=\dfrac{x^2+1}{\left|-\left(2x-1\right)\right|+\left|-\left(2x+1\right)\right|}\)
\(=\dfrac{x^2+1}{\left|2x-1\right|+\left|2x+1\right|}\) \(=f\left(x\right)\)
Vậy hàm số \(y=f\left(x\right)=\dfrac{x^2+1}{\left|2x+1\right|+\left|2x-1\right|}\) là hàm số chẵn.
TXĐ: D=R
Khi \(x\in D\) thì \(-x\in D\)
\(f\left(-x\right)=\dfrac{\left(-x\right)^2+1}{\left|-2x+1\right|+\left|-2x-1\right|}\)
\(=\dfrac{x^2+1}{\left|2x+1\right|+\left|2x-1\right|}=f\left(x\right)\)
=>f(x) chẵn
e: \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3\cdot\left(-x\right)^2-1}{\left(-x\right)^2-4}=\dfrac{x^4+3x^2-1}{x^2-4}=f\left(x\right)\)
Vậy: f(x) là hàm số chẵn
\(c,f\left(-x\right)=\sqrt{-2x+9}=-f\left(x\right)\)
Vậy hàm số lẻ
\(d,f\left(-x\right)=\left(-x-1\right)^{2010}+\left(1-x\right)^{2010}\\ =\left[-\left(x+1\right)\right]^{2010}+\left(x-1\right)^{2010}\\ =\left(x+1\right)^{2010}+\left(x-1\right)^{2010}=f\left(x\right)\)
Vậy hàm số chẵn
\(g,f\left(-x\right)=\sqrt[3]{-5x-3}+\sqrt[3]{-5x+3}\\ =-\sqrt[3]{5x+3}-\sqrt[3]{5x-3}=-f\left(x\right)\)
Vậy hàm số lẻ
\(h,f\left(-x\right)=\sqrt{3-x}-\sqrt{3+x}=-f\left(x\right)\)
Vậy hàm số lẻ
lời giải
a) Hàm chẵn
b) f(x) =f(-x)=>hàm chẵn
c) không chẵn, không lẻ
d)f(-x) =\(\dfrac{-x^4+x^2+1}{-x}=-\dfrac{-x^4+x^2+1}{x}=-f\left(x\right)\) =>hàm lẻ
a) y vừa là hàm số chẵn, vừa là hàm số lẻ.
b) TXĐ: R tự đối xứng.
\(y\left(-x\right)=3\left(-x\right)^2-1=3x^2-1=y\left(x\right)\).
Vậy y là hàm số chẵn.
c) TXĐ: R tự đối xứng.
\(y\left(-x\right)=-\left(-x\right)^4+3\left(-x\right)-2=-x^4-3x-2\)
\(-y\left(x\right)=x^4-3x+2\).
Dẽ thấy \(y\left(-x\right)\ne y\left(x\right)\) và \(y\left(-x\right)\ne-y\left(x\right)\) nên y không là hàm chẵn và hàm số lẻ.
D) TXĐ: R\ {0} tự đối xứng.
\(y\left(-x\right)=\dfrac{-\left(-x\right)^4+\left(-x\right)^2+1}{-x}=-\dfrac{-x^4+x^2+1}{x}=-y\left(x\right)\)
Vậy y là hàm số lẻ.
TXĐ: D=[-4;4]
\(f\left(-x\right)=\sqrt{4-\left(-x\right)}+\sqrt{-x+4}\)
\(=\sqrt{4-x}+\sqrt{4+x}\)
=f(x)
=>f(x) là hàm số chẵn
\(f\left(-x\right)=\dfrac{\left(-x\right)^2+4}{\left(-x\right)^4}=\dfrac{x^2+4}{x^4}=f\left(x\right)\)
Vậy: f(x) là hàm số chẵn