Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
A(x) chia hết cho B(x) khi (a + 2)x + b – 1 là đa thức 0
Vậy a + 2 = 0 và b – 1 = 0 ⇒ a = -2 và b = 1
A(x) chia hết cho B(x) khi (a + 2)x + b – 1 là đa thức 0
Vậy a + 2 = 0 và b – 1 = 0 ⇒ a = -2 và b = 1
Đặt \(A=x^4+ax^3+bx-1=\left(x^2-1\right).Q\left(x\right)=\left(x-1\right)\left(x+1\right)Q\left(x\right)\)
Cho lần lượt \(x=1,x=-1\)vào đẳng thức trên, ta có:
\(\hept{\begin{cases}1+a+b-1=0\\1-a-b-1=0\end{cases}\Rightarrow a+b=0\Rightarrow a=-b}\)
Vậy với \(a=-b\left(a,b\in Q\right)\)thì \(\left(x^4+ax^3+bx-1\right)⋮\left(x^2-1\right)\)
Chúc bạn học tốt.
\(a,\Leftrightarrow2x^2+x+a=\left(x+3\right)\cdot g\left(x\right)\\ \text{Thay }x=-3\Leftrightarrow18-3+a=0\Leftrightarrow a=-15\\ b,\Leftrightarrow x^3+ax^2-4=\left(x^2+4x+4\right)\cdot f\left(x\right)=\left(x+2\right)^2\cdot f\left(x\right)\\ \text{Thay }x=-2\Leftrightarrow-8+4a-4=0\\ \Leftrightarrow4a-12=0\Leftrightarrow a=3\)
\(a,4x^3+ax+b⋮x-2\\ \Leftrightarrow4x^3+ax+b=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow32+2a+b=0\Leftrightarrow2a+b=-32\left(1\right)\)
\(4x^3+ax+b⋮x+1\\ \Leftrightarrow4x^3+ax+b=\left(x+1\right)\cdot b\left(x\right)\)
Thay \(x=-1\Leftrightarrow-4-a+b=0\Leftrightarrow a-b=-4\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) ta có hệ \(\left\{{}\begin{matrix}2a+b=-32\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-36\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-12\\b=-8\end{matrix}\right.\)
Gọi thương của phép chia 2x3 - x2 + ax + b cho x2 - 1 là Q(x)
Ta có: 2x3 - x2 + ax + b = (x2 - 1)Q(x)
\(\Leftrightarrow\)2x3 - x2 + ax + b = (x - 1)(x + 1)Q(x)
Vì đẳng thức trên luôn đúng với mọi x nên lần lượt cho x = 1; x = -1 ta đc:
\(\hept{\begin{cases}2-1+a+b=0\\-2-1-a+b=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=-2\\b=1\end{cases}}\)
Vậy a = -2; b = 1 thì 2x3 - x2 + ax + b chia hết cho x2 - 1