K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2022

để pt trên có 2 nghiệm pb thì \(\Delta'>0\)

<=> \(m^2+6m+9-4m-12>0\)

<=>\(m^2+2m-3>0\)

<=>\(\left(m-1\right)\left(m+3\right)>0\)

<=>\(\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)

cho \(x_1,x_2\)  là 2 nghiệm của pt và \(x_1< x_2\)

cần chứng minh \(x_1>-1\)

<=>\(-m-3-\sqrt{m^2+2m-3}>-1\)

<=>\(\sqrt{m^2+2m-3}>m+2\)

<=>\(\left[{}\begin{matrix}m^2+2m-3>m^2+4m+4\\m^2+2m-3>-m^2-4m-4\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}2m+7< 0\\2m^2+6m+1>0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}m< \dfrac{-7}{2}\\m>\dfrac{-3+\sqrt{7}}{2}\\m< \dfrac{-3-\sqrt{7}}{2}\end{matrix}\right.\)

so với điều kiện ở đè bài =>\(m< \dfrac{-7}{2}\)thỏa yêu câu đề bài 

KL: để pt có 2 nghiệm pb đều lớn hơn -1 thì \(m< \dfrac{-7}{2}\)

 

 

21 tháng 3 2022

;-;!!!

NV
21 tháng 3 2022

\(\Delta'=\left(m+3\right)^2-\left(4m+12\right)=m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=4m+12\end{matrix}\right.\)

Pt có 2 nghiệm lớn hơn -1 khi: \(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2\left(m+3\right)+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{7}{2}\\m< -2\end{matrix}\right.\) \(\Rightarrow-\dfrac{7}{2}< m< -2\)

Kết hợp điều kiện ban đầu \(\Rightarrow-\dfrac{7}{2}< m< -3\)

28 tháng 11 2021

undefined

28 tháng 11 2021

Cảm ơn ạ yeu

NV
24 tháng 12 2020

1.

\(\Leftrightarrow6x^2-12x+7-6\sqrt{6x^2-12x+7}-7=0\)

Đặt \(\sqrt{6x^2-12x+7}=t>0\)

\(\Rightarrow t^2-6t-7=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=7\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{6x^2-12x+7}=7\)

\(\Leftrightarrow6x^2-12x+7=49\Rightarrow x=1\pm2\sqrt{2}\)

2.

\(\Delta'=\left(m+1\right)^2-m^2-3=2m-2>0\Rightarrow m>1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-2x_1x_2=2x_1x_2+8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-8=0\)

\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3\right)-8=0\)

\(\Leftrightarrow2m-4=0\Rightarrow m=2\)

2 tháng 12 2021

Pt: x2+4x+m+1 (1)

Ta có △'= 22-1.(m+1)=3-m

a)  Pt (1) vô nghiệm ⇔△'<0⇔3-m<0⇔m>3

b)  (1) có nghiệm kép ⇔△'=0 ⇔ m=3

c)  (1)  có nghiệm ⇔ △' ≥ 0 ⇔ m ≤3

d)  (1)  có 2 nghiệm phân biệt ⇔ △' >0 ⇔m<3

e)   (1) có 2 nghiệm trái dấu ⇔ 1.(m+1)< 0⇔m<-1

f)    (1) có 2 nghiệm dương phân biệt ⇔ △'>0 , x1+x2 = -b/a>0, x1.x2=c/a>0

⇔m<3,  -4>0, m+1>0

⇒ vô nghiệm