K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2022

để pt trên có 2 nghiêm phân biệt thì  Δ>0

hay [2(m+2)]^2-4(m+12)>0

<=>4m^2+16m+16-4m-48>0
<=>4m^2+12m-32>0

 =>m^2+3m-8>0

<=>m^2+3m>8

<=>m>8/(m+3)

vậy khi m>8/(m+3) thì ot có 2 nghiệm phân biệt

 

12 tháng 10 2023

Ta có: `{(x_1 < 1),(x_2 < 1):}=>(x_1 -1)(x_2 -1) > 0`

Phương trình có `2` nghiệm phân biệt

   `=>\Delta > 0`

`<=>[-(m-1)]^2+4m > 0`

`<=>m^2-2m+4m+1 > 0`

`<=>m^2+2m+1 > 0<=>(m+1)^2 > 0`

    `=>m+1 ne 0<=>m ne -1`

 `=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=m-1),(x_1.x_2=c/a=-m):}`

Ta có: `(x_1 -1)(x_2 -1) > 0`

`<=>x_1 .x_2-(x_1 +x_2)+1 > 0`

`<=>-m-m+1+1 > 0`

`<=>m < 1`

  Mà `m ne -1`

  `=>m < 1,m ne -1`.

12 tháng 10 2023

\(\Delta=\left(m-1\right)^2-4.\left(-m\right)\)

\(=\left(m^2-2m+1\right)+4m=\left(m+1\right)^2\)

Để pt có 2 nghiệm phân biệt => \(m\ne-1\)

\(\left[{}\begin{matrix}x_1=\dfrac{m-1+m+1}{2}=m\\x_2=\dfrac{m-1-m-1}{2}=-1\end{matrix}\right.\)

Để pt có 2 nghiệm phân biệt bé 1

\(\Rightarrow m< 1\)

10 tháng 4 2021

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)

14 tháng 3 2022

a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)

Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)

Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.

Câu b mình nhìn không rõ đề, bạn sửa lại nhé.

8 tháng 11 2017

Đáp án C

24 tháng 3 2019

chị lên hh nhá , sẽ có giáo viên giảng cho 

24 tháng 3 2019

ở đâu

 lazi á

em gửi link ik chị vào liền

15 tháng 6 2016

a)(m-1)x2+2(m-1)x-m

pt bậc 2 có dạng ax2+bx+c=0.

a=(m-1);b=(m-1);c=-m

áp dụng b2-4ac.ta có:Denta=(m-1)2-4[(-m)*(m-1)]

Để pt có nghịm kép =>Denta=0

=>(m-1)2-4[(-m)*(m-1)]=0

=>m=1 hoặc m=0

Thay với m=1 vào và m=0 vào tự tính

b)Để pt có 2 nghiệm phân biệt thì Denta>0

=>(m-1)2-4[(-m)*(m-1)]>0

=>5m2-6m+1>0 

Giải BPT này ra

15 tháng 6 2016

à mk thêm 1 bước nữa để bạn giải cho nhẹ

5m2-6m+1>0

<=>(m-1)(5m-1)>0 tới đây học sinh lớp 6 cx có thể giải đc nhé chúc bạn học tốt

18 tháng 8 2016

a, Để pt có 2 nghiệm phân biệt thì Δ>0

→(-2(m-1))-4(m-2)(m+1)>0

↔4(m2-2m+1)-4(m2-2m+m-2)>0

↔-4m +12>0

↔m<3