Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các hệ số trong khai triển là:
\(a_0+a_1+...+a_n=\left(1+2.1\right)^{2023}=3^{2023}\)
+) Ta có:
\(\begin{array}{l}{\left( {3x + 2} \right)^5} = {\left( {3x} \right)^5} + 5.{\left( {3x} \right)^4}2 + 10.{\left( {3x} \right)^3}{2^2} + 10{\left( {3x} \right)^2}{.2^3} + 5.\left( {3x} \right){.2^4} + {2^5}\\ = 243{x^5} + 810{x^4} + 1080{x^3} + 720{x^2} + 240x + 32\end{array}\)
+) Hệ số của \({x^4}\) trong khai triển trên là: \({a_4} = 810\)
Áp dụng công thức nhị thức Newton ta có
Hệ số \({x^3}\) là hệ số của số hạng \(C_5^3{\left( {3x} \right)^3}{\left( { - 2} \right)^2} = 1080{x^3}\)
Vậy hệ số của \({x^3}\) là 1080
- Nếu \(a_i=0\) ; \(\forall i\in\left(0;n-1\right)\Rightarrow a_nx^n=0\Rightarrow\alpha=0< 1\) thỏa mãn
- Nếu tồn tại \(a_i\ne0\), đặt \(max\left|\dfrac{a_i}{a_n}\right|=A>0\)
Do \(\alpha\) là nghiệm nên:
\(a_n\alpha^n+a_{n-1}\alpha^{n-1}+...+a_1\alpha+a_0=0\)
\(\Leftrightarrow\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}=-\alpha^n\)
\(\Leftrightarrow\left|\alpha^n\right|=\left|\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}\right|\)
\(\Rightarrow\left|\alpha^n\right|\le\left|\dfrac{a_0}{a_n}\right|+\left|\dfrac{a_1}{a_n}\right|.\left|\alpha\right|+...+\left|\dfrac{a_{n-1}}{a_n}\right|.\left|\alpha^{n-1}\right|\le A+A.\left|\alpha\right|+...+A.\left|\alpha^{n-1}\right|\)
\(\Rightarrow\left|\alpha^n\right|\le A\left(1+\left|\alpha\right|+\left|\alpha^2\right|+...+\left|\alpha^{n-1}\right|\right)\)
\(\Rightarrow\left|\alpha^n\right|\le A.\dfrac{\left|\alpha^n\right|-1}{\left|\alpha\right|-1}\)
TH1: Nếu \(\left|\alpha\right|\le1\) hiển nhiên ta có \(\left|\alpha\right|< 1+A\) (đpcm)
TH2: Nếu \(\left|\alpha\right|>1\)
\(\Rightarrow\left|\alpha^n\right|\le\dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}-\dfrac{A}{\left|\alpha\right|-1}< \dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}\)
\(\Leftrightarrow\left|\alpha\right|-1< A\Rightarrow\left|\alpha\right|< 1+A\) (đpcm)
Xét khai triển \(\left(x+2\right)^5\left(3x+4\right)^5=\sum\limits^5_{k=0}C^k_5x^k.2^{5-k}.\sum\limits^5_{l=0}C^l_5.3^lx^l.4^{5-l}\)
\(=\sum\limits^5_{k=0}\sum\limits^5_{l=0}C^k_5.C^l_5.2^{5-k}.3^l.4^{5-l}.x^{k+l}\)
Xét \(k+l=9\), ta có các bộ \(\left(k,l\right)\) sau thỏa mãn: \(\left(k,l\right)\in\left\{\left(4;5\right);\left(5;4\right)\right\}\) (do \(k,l\le5\))
\(\Rightarrow\) Hệ số của số hạng chứa \(x^9\) trong khai triển đã cho là \(C^4_5.C^5_5.2^{5-4}.3^5.4^{5-5}+C^5_5.C^4_5.2^{5-5}.3^4.4^{5-4}\) \(=4050\)
*xét khai triển (x+2)^5
= > T k+1=kC4. x^4-k
Số hạng chứa x^9=>x^5-k=x^9
<=> 5-k=9=>k=-4
-->số hạng chứa x^9 là: -4C5.x^9.2^5=
--->kết quả bạn tự tính nhé
* Cách tính như sau : thứ nhất bấm 5 rồi nhấn ship chia(:) -4 rồi nhân cho 2^5 sẽ ra kết quả
Xét khai triển (3x+4)^5
--> File: undefined
Chú ý phần trả lời cái câu (3x+4)^5 là Chữ viết bằng bút màu xanh nhé
Nếu chưa hiểu rõ thì id mình sẽ hướng dẫn kĩ hơn nhé
Tìm hệ số của số hạng chứa \(x^5\) trong khai triển đa thức \(f\left(x\right)=x\left(1-2x\right)^5\)
Ta có: \(x.\left(C^k_n.a^{n-k}.b^k\right)=x.\left(C^k_5.a^{5-k}.b^k\right)=C^k_5.1^{5-k}.2^k.x^k.x\)
\(=C^k_5.2^k.x^{k+1}\)
Mà ta cần tìm số hạng của x5
\(\Rightarrow k+1=5\Leftrightarrow k=4\)
Vậy số hạng của x5 là: \(C^4_5.2^4=80\)
Ta nhân thêm ''x'' vào số hạng tổng quát vì có ''x'' là nhân tử chung của mỗi số hạng trong khải triển
Ta có:
\(A_n^2 + 24C_n^1 = \frac{{n!}}{{\left( {n - 2} \right)!}} + 24.\frac{{n!}}{{1!\left( {n - 1} \right)!}} = n(n - 1) + 24n\)
\( \Leftrightarrow {n^2} + 23n = 140 \Leftrightarrow \left[ \begin{array}{l}n = 5\\n = - 28\;(L)\end{array} \right.\)
Thay \(a = 2x,b = - 1\) trong công thức khai triển của \({(a + b)^5}\), ta được:
\(\begin{array}{l}{(2x - 1)^5} = {\left( {2x} \right)^5} + 5.{\left( {2x} \right)^4}.( - 1) + 10.{\left( {2x} \right)^3}.{( - 1)^2}\\ + 10.{\left( {2x} \right)^2}.{( - 1)^3} + 5.(2x).{( - 1)^4} + {( - 1)^5}\\ = 32{x^5} - 80{x^4} + 80{x^3} - 40{x^2} + 10x - 1\end{array}\)