K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

Bài b :

Gọi \(P\left(x\right)=2x^3+ax+b\)

Theo đề bài ta có hệ phương trình :

\(\left\{{}\begin{matrix}P\left(-1\right)=-2-a+b=-6\\P\left(2\right)=16+2a+b=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=-4\\2a+b=5\end{matrix}\right.\)

\(\)\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)

Vậy ................

a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)

hay a=7

28 tháng 10 2019

dựa vào đây nha bạn: https://hoc24.vn/hoi-dap/question/476806.html

28 tháng 10 2019

Vậy \(a=3;b=-1.\)

Chúc bạn học tốt!

7 tháng 8 2018

 a) Có : 3x\(^2\)+ax + 27 : x+5 dư 2

=> 3x\(^2\) + ax + 27 = (x+5) . A(x) +2 với mọi x

=> 3x\(^2\)+ax+ 25 = (x+5) .A (x) với mọi x

Với x = -5 ta có :

3.(-5)\(^2\)+a(-5) +25= (-5+5).A(-5)

=> 100 + a(-5) = 0

=> a= 20

Vậy a= 20 thì \(3x^2\) + ax+27 chia x+5 dư 2

7 tháng 8 2018

a) thuc hien phep chia \(3x^2+ax+27\)chia cho x+5 co thuong la 3x+(a-5) va so du la 102-5a

\(\Rightarrow102-5a=2\Rightarrow a-20\)

b) thuc hien phep chia \(2x^2+ax+1\)chia cho x-3 cho thuong la 2x+(a+6) va so du la 19+3a

\(\Rightarrow19+3a=1\Rightarrow a=-6\)

10 tháng 12 2017

Bài 1: 
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12. 
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.

b, a=-2 
c,a=-20 

Bài2.Xác định a và b sao cho 
a)x^4+ax^2+1 chia hết cho x^2+x+1 
b)ax^3+bx-24 chia hết cho (x+1)(x+3) 
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3 
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21

Giải

a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2) 
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p) 
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi) 
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p 
Đồng nhất hệ số, ta có: 
m = 1 
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0) 
n + p = a 
n + p =0 
p = 1 
=>n = -1 và n + p = -1 + 1 = 0 = a 
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1 
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d: 
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21 

b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0 
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**) 
giải hệ (*), (**) trên ta được a= 2; b=-26 

c) f(x) =x^4-x^3-3x^2+ax+b 
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó: 
f(x) =(x+1)(x-2).g(x) +2x-3 
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1 
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b 
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1 

d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21 
f(-1) = -6 ---> -2-a+b =-6 (*) 
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**) 
Giải hệ (*); (**) trên ta được a=3; b=-1

13 tháng 8 2015

a) x^4 - x^3 + ax + b chia  cho x^2 -x - 2 dư 2x - 3 

=> x^4 - x^3 + ax + b = ( x^2 - x - 2 ) q(x) + 2x - 3 

=> x^4 - x^3 + ax + b = (  x + 1 )(x- 2 ) q(x) + 2x - 3 

Thay x = 2 ta có :

       2^4 - 2^3 + 2a + b = 0 + 2.2 - 3

        16  - 8 + 2a + b = 1

          8 + 2a + b = 1 

               2a + b     = -7 => b = -7 - 2a 

Thay x = -1 ta có :

           (-1)^4 - (-1)^3 + (-1).a + b = 0 + 2(-1) - 3

            1 + 1 - a + b                = -2 - 3

                2 - a + b                = -5

                  -a + b                  = - 7 

Thay b = -7 - 2 a ta có :

                  -a + -7 - 2a             = -7

                     -3a - 7                  = -7

                        -a                        = 0

                         a = 0 

b = - 7 -2a = -7 - 0 = -7 

Vậy a = 0 ; b = -7 

 

16 tháng 11 2022

a: \(\Leftrightarrow x^4+x^3-x^3-x^2+\left(a+1\right)x^2+\left(a+1\right)x-\left(a+1\right)x-a-1+b⋮x+1\)

=>b=0 và a+1=0

=>a=-1 và b=0

b: \(\dfrac{2x^3+ax+b}{x+1}=\dfrac{2x^3+2x^2-2x^2-2x+\left(a+2\right)x+a+2+b-a-2}{x+1}\)

=>b-a-2=6

\(\dfrac{2x^3+ax+b}{x-1}\)

\(=\dfrac{2x^3-2x^2+2x^2-2x+\left(a+2\right)x-a-2+a+2+b}{x-1}\)

=>a+b+2=21

=>a=11/2; b=27/2