K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
26 tháng 8 2019
Cách nêu tính chất đặc trưng:
A=\(\left\{x/\left(x^2+2x-3\right)\left(x^2-13x+42\right)\right\}\)
B=\(\left\{\frac{2x+1}{2^{x+1}},x\in N,0\le x\le4\right\}\)
NT
24 tháng 7 2016
A={\(\frac{1}{x^2}\)x={1;2;3;.....;15}}
B={x+a I a={1;3;5;7;.....} ; x2=a1+x1;x3=a3+x3....}
8 tháng 8 2023
B={x\(\in\)N|x=3k; 1<=k<=4}
C={x\(\in\)N|x=4*a2; 1<=a<=5}
D={x\(\in\)N|x=9*a2;1<=a<=4}
E={x\(\in\)N|x=4k; 0<=x<=4}
G={x\(\in\)N|x=(-3)^k; 1<=k<=4}
AH
Akai Haruma
Giáo viên
31 tháng 8 2019
Lời giải:
Nếu không dùng PT tích thì ta đi tìm quy luật của dãy số. Cuối cùng thu được kết quả là:
\(X=\left\{x\in\mathbb{Q}:x=\frac{n}{2n^2+1}, n\in\mathbb{N}, 0\leq n\leq 7\right\}\)