Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình 2 x 2 – (1 - 2 2 )x - 2 = 0 có a = 2, b = -(1 - 2 2 ), c = - 2
Ta có: ∆ = b 2 – 4ac = - 1 - 2 2 2 – 4.2.(- 2 )
= 1 - 4 2 + 8 + 8 2 = 1 + 4 2 + 8
= 1 + 2.2 2 + 2 2 2 = 1 + 2 2 2 > 0
= 1 + 2 2
Phương trình có 2 nghiệm phân biệt :
Phương trình 5 x 2 – x + 2 = 0 có a = 5, b = -1, c = 2
Ta có: ∆ = b 2 – 4ac = - 1 2 – 4.5.2 = 1 – 40 = -39 < 0
Vậy phương trình vô nghiệm.
Phương trình 2 x 2 – 5x + 1 = 0 có a = 2, b = -5, c = 1
Ta có: ∆ = b 2 – 4ac = - 5 2 – 4.2.1 = 25 – 8 = 17 > 0
∆ = 17
Phương trình có 2 nghiệm phân biệt :
Phương trình 3 x 2 + 7,9x + 3,36 = 0 có a = 3, b = 7,9, c = 3,36
Ta có: Δ = b 2 – 4ac = 7 , 9 2 – 4.3.3,36 = 62,41 – 40,32 = 22,09 > 0
∆ = 22 , 09 = 4,7
Phương trình có 2 nghiệm phân biệt :
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)
Phương trình 2 x 2 - 2 2 x + 1 = 0 có a = 2, b = -2 2 , c = 1
Ta có: ∆ = b 2 – 4ac = - 2 2 2 – 4.2.1 = 8 – 8 = 0
Phương trình có nghiệm kép :