Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt phép chia ta tìm được dư cuối cùng là (3+b +a -6b -1) x + 2 - (a -6b -1). b
Để phép chia trên là phép chia hết thì dư cuối cùng là 0
suy ra các hệ số của đa thức dư đều =0, tức là 2 +a -5b = 0 (1) và 2 -(a -6b -1). b = 0 (2)
Từ (1) suy ra a = 5b -2, thay vào (2) và rút gọn ta được b2+3b +2 = 0 suy ra b = -1 hoặc b = -2
Với b = -1 suy ra a = -7; Với b =-2 suy ra a = -12. Bài toán có 2 đáp số
\(x^3-ax^2-2x+2a=0\Leftrightarrow x^2\left(x-a\right)-2\left(x-a\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x-a\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=a\end{matrix}\right.\)
Để pt có 3 nghiệm pb \(\Leftrightarrow a\ne\pm\sqrt{2}\)
TH1: \(a=\frac{\sqrt{2}-\sqrt{2}}{2}\Rightarrow a=0\)
TH2: \(\sqrt{2}=\frac{a-\sqrt{2}}{2}\Rightarrow a=3\sqrt{2}\)
TH3: \(-\sqrt{2}=\frac{a+\sqrt{2}}{2}\Rightarrow a=-3\sqrt{2}\)
Vậy \(a=\left\{0;\pm3\sqrt{2}\right\}\)
Xét hàm số: y=(m-5)x+m-2
a)Hàm số (1) là hsbn\(\Leftrightarrow m-5\ne0\Leftrightarrow m\ne5\)
Vì DTHS (1) đi qua điểm M(3;-1)\(\Rightarrow\left(3;-1\right)\in DTHS\left(1\right)\)
Thay x=3; y=-1 vào DTHS (1) ta có: \(-1=\left(m-5\right).3+m-2\Leftrightarrow3m-15+m-2=-1\Leftrightarrow4m=16\)
\(\Leftrightarrow m=4\left(tmđk\right)\)
Vậy m=4 tmđb
b) DTHS (1) song song với đường thẳng y=x-4\(\Leftrightarrow\hept{\begin{cases}m-5=1\\m-2\ne-4\end{cases}\Leftrightarrow\hept{\begin{cases}m=6\\m\ne-2\end{cases}\Leftrightarrow}}m=6\left(tmđk\right)\)
Vậy m=6 tmđb
\(x^4+1=\left(x^2+ax+b\right)\left(x^2-ax+a^2-b\right)+\left(2ab-a^3\right)x+1+b^2-a^2b\)
Để chia hết thì \(\left(2ab-a^3\right)x+1+b^2-a^2b\) phải là đa thức 0.
\(\Leftrightarrow2ab-a^3=0;\text{ }1+b^2-a^2b=0\)
\(\Leftrightarrow\left(a;b\right)=\left(\sqrt{2};1\right);\left(-\sqrt{2};1\right)\)