Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.
Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2
Giải hệ phương trình: ta được a = 2, b = 1.
Parabol có phương trình là: y = 2x2 + x + 2.
b) Giải hệ phương trình:
Parabol: y = x2 - x + 2.
c) Giải hệ phương trình:
Parabol: y = x2 - 4x + 2.
d) Ta có:
Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.
mình nghĩ pt (P) : y = ax^2 - bx + c chứ ?
a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)
(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1)
(P) đi qua điểm C(-1;1) <=> \(a+b+c=1\)(2)
Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)
Vậy pt Parabol có dạng \(x^2-x-1=y\)
Bài 1b
(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)
(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)
Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)
tương tự nhé
a)
y(1) =a-4+c=\(-2\)\(\Rightarrow\) a+c=2
y(2)=4a-8+c=3 \(\Rightarrow\)4a+c=3
Trừ cho nhau\(\Rightarrow\)3a=1 \(\Rightarrow\)a=\(\dfrac{1}{3}\)\(\Rightarrow\) \(c=2-\dfrac{1}{3}=\dfrac{5}{3}\).
Vậy: \(y=\dfrac{1}{3}x^2-4x+\dfrac{5}{3}\).
b)
I(-2;1)\(\Rightarrow\dfrac{4}{2a}=-2\)\(\Leftrightarrow a=-1\).
y(-2) \(=-4+8+c=1\)\(\Rightarrow\) \(c=-3\)
Vậy: \(y=-x^2-4x-3\).
c)\(\dfrac{4}{2a}=-3\)\(\Leftrightarrow a=-\dfrac{2}{3}\)
\(y\left(-2\right)=-\dfrac{2}{3}.4+8+c=1\)\(\Leftrightarrow c=-\dfrac{13}{3}\)
Vậy: \(y=-\dfrac{2}{3}x^3-4x-\dfrac{13}{3}\).
Lời giải:
Để ĐTHS có đỉnh $I$ thì $a< 0$
Tọa độ đỉnh $I$:
\(x_I=\frac{-b}{2a}=-1\Rightarrow b=2a(1)\)
Điểm $I$ thuộc ĐTHS $y$ nên:
\(y_I=y(x_I)\Leftrightarrow 5=a(-1)^2+b(-1)+c\Leftrightarrow 5=a-b+c(2)\)
ĐTHS đi qua điểm $A(1;1)$
$\Leftrightarrow y_A=y(x_A)$
$\Leftrightarrow 1=a.1^2+b.1+c=a+b+c(3)$
Từ $(1);(2); (3)\Rightarrow a=-1; b=-2; c=4$
Lời giải:
Để ĐTHS có đỉnh $I$ thì $a< 0$
Tọa độ đỉnh $I$:
\(x_I=\frac{-b}{2a}=-1\Rightarrow b=2a(1)\)
Điểm $I$ thuộc ĐTHS $y$ nên:
\(y_I=y(x_I)\Leftrightarrow 5=a(-1)^2+b(-1)+c\Leftrightarrow 5=a-b+c(2)\)
ĐTHS đi qua điểm $A(1;1)$
$\Leftrightarrow y_A=y(x_A)$
$\Leftrightarrow 1=a.1^2+b.1+c=a+b+c(3)$
Từ $(1);(2); (3)\Rightarrow a=-1; b=-2; c=4$
vì có ít time nên mk hướng dẩn thôi nha .
câu 1: vì parabol có đỉnh là \(I\left(-1;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\) (1)
và nó cắt trục tung tại điểm có tung độ là \(1\) \(\Rightarrow c=1\) (2)
từ (1) và (2) ta có hệ : \(\Rightarrow a;b;c\)
câu 2 : vì parabol có đỉnh là \(I\left(-1;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\)
thế vào \(M\) đưa về dạng bình phương 1 số là ô kê .
câu 3 : tương tự câu 2 thôi nha
từ dữ liệu đề bài \(\Rightarrow\left\{{}\begin{matrix}4a-2b+c=0\\a+b+a=0\end{matrix}\right.\) \(\Rightarrow\) ........................
Do (P) đi qua \(M\left(4;3\right)\Rightarrow16a+4b+c=3\)
Do (P) cắt Ox tại \(N\left(3;0\right)\Rightarrow9a+3b+c=0\)
\(\Rightarrow7a+b=3\Rightarrow b=3-7a\)
\(9a+3\left(3-7a\right)+c=0\Rightarrow c=12a-9\)
Phương trình hoành độ giao điểm (P) và Ox: \(ax^2+bx+c=0\)
\(\Delta=b^2-4ac=\left(3-7a\right)^2-4a\left(12a-9\right)=\left(a-3\right)^2\)
Do \(\left\{{}\begin{matrix}x_P< x_I< x_N< x_M\\y_N< y_M\end{matrix}\right.\) \(\Rightarrow\) hàm \(y=ax^2+bx+c\) đồng biến trên \(\left(-\frac{b}{2a};+\infty\right)\)
\(\Rightarrow a>0\)
\(\Rightarrow x_N=\frac{-b+\left|a-3\right|}{2a}=\frac{7a-3+\left|a-3\right|}{2a}=3\)
\(\Rightarrow\left|a-3\right|=3-a\Rightarrow0< a< 3\)
\(\Rightarrow S_{INP}=\frac{1}{2}\left(x_N-x_P\right).\left|\frac{-\Delta}{4a}\right|=\frac{1}{2}\frac{\sqrt{\Delta}}{a}.\frac{\Delta}{4a}=1\)
\(\Leftrightarrow\left(3-a\right)\left(a-3\right)^2=8a^2\)
\(\Leftrightarrow a^3-a^2+27a-27=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+27\right)=0\Rightarrow a=1\)
\(\Rightarrow b=-4\) ; \(c=3\)
\(\left(P\right):y=x^2-4x+3\)
Ý bạn là công thức tính diện tích tam giác INP?
Kẻ \(IH\perp Ox\Rightarrow IH=\left|y_I\right|=\left|\frac{-\Delta}{4a}\right|\)
\(NP=\left|x_N-x_P\right|=x_N-x_P=\frac{\sqrt{\Delta}}{a}\) \(\left(\frac{-b+\sqrt{\Delta}}{2a}-\frac{-b-\sqrt{\Delta}}{2a}=\frac{\sqrt{\Delta}}{a}\right)\)
Sau đó thay vào thôi
Bài 2:
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=2\\-\dfrac{b^2-4ac}{4a}=1\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\\left(-2a\right)^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\a-c=-1\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+1\\a-2a+a+1=-1\end{matrix}\right.\)
=>1=-1(loại)
Hàm số đi qua \(A\left(8;0\right)\) nên: \(a.8^2+8b+c=0\)\(\Leftrightarrow64a+8b+c=0\).
Hàm số có đỉnh là: \(I\left(6;-12\right)\) nên: \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=6\\6^2.a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}12a+b=0\\36a+6b+c=-12\end{matrix}\right.\).
Vậy ta có hệ: \(\left\{{}\begin{matrix}64a+8b+c=0\\-b=12a\\36a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-36\\c=96\end{matrix}\right.\).
Vậy : \(y=-3x^2-36x+96\).
bấm máy giải hệ ra 3 chứ sao lại là -3 nhỉ