Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)
\(\Rightarrow\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{30}{6}=5\)
\(\Rightarrow\)x2=20
y2=45
z2=125
Áp dụng .......................................
ta được: x/2=y/3=z/5=(x2+3y2-z2)/(22+3*32-52)=30/6=5
Vậy: x=10
y=15
z=25
Ta có: \(3x=4y=5z\) => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x+y-z}{\frac{2}{3}+\frac{1}{4}-\frac{1}{5}}=\frac{43}{\frac{43}{60}}=60\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=60\\\frac{y}{\frac{1}{4}}=60\\\frac{z}{\frac{1}{5}}=60\end{cases}}\) => \(\hept{\begin{cases}x=60\cdot\frac{1}{3}=20\\y=60\cdot\frac{1}{4}=15\\z=60\cdot\frac{1}{5}=12\end{cases}}\)
Vậy ...
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
Áp dụng t/c dãy tỉ số bằng nhau:
a.
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)
(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)
b.
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)
c.
\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)
d.
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)
a) 3x = 7y ⇒ x/7 = y/3
⇒ x/7 = 2y/6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2
x/7 = 2 ⇒ x = 2.7 = 14
y/3 = 2 ⇒ y = 2.3 = 6
Vậy x = 14; y = 6
b) x/2 = y/3 ⇒ x/6 = y/9 (1)
x/3 = z/4 ⇒ x/6 = z/8 (2)
Từ (1) và (2) ⇒ x/6 = y/9 = z/8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1
x/6 = 1 ⇒ x = 1.6 = 6
y/9 = 1 ⇒ y = 1.9 = 9
z/8 = 1 ⇒ z = 1.8 = 8
Vậy x = 6; y = 9; z = 8
c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)
y/5 = z/4 ⇒ y/15 = z/12 (4)
Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1
2x/20 = 1 ⇒ x = 1.20 : 2 = 10
y/15 = 1 ⇒ y = 1.15 = 15
z/12 = 1 ⇒ z = 1.12 = 12
Vậy x = 10; y = 15; z = 12
a) Theo đề, ta có:
2.x = 3.y = 4.z
=> 2.x/12 = 3.y/12 = 4.z/12
=> x/6 = y/4 = z/3
mà 2.x + 3.y - 5.z = -1,8
Áp dụng tính chất dãy tỉ số bằng nhau:
x/6 = y/4 = z/3 = 2.x + 3.y - 5.z / 2.6 + 2.4 + 2.3 = -1,8/26 = a
=> x=a.6=b
=> y=a.4=c
=> z=a.3=d
Bn tính ra nhé, thay vào a,b,c,d
Tk cho mk nhé ae!!!!!!!
b) Theo đề, ta có:
2/3.x = 3/4.y = 5/6 .z
=>x/3/2 = y/4/3 = z/6/5
mà 2.y + x + z = -39
Áp dụng tính chất dãy tỉ số bằng nhau:
x/3/2 = y/4/3 = z/6/5 = 2.y + x + z/ 2.4/3 + 3/2 +6/5 =-39/161/30=a
=>x = a.3/2 = b
=>y = a.4/3 = c
=>z = a.6/5 = d
Thay vào a,b,c,d dùm mk, mk ko có máy tính tay nên ko tính đc
Tk cho mk nhé ae!!!!!!!!!!!
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Ta có:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) và \(x+y=k.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y}{a+b}=\frac{k}{a+b}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{a}=\frac{k}{a+b}\Rightarrow x=\frac{k}{a+b}.a\\\frac{y}{b}=\frac{k}{a+b}\Rightarrow y=\frac{k}{a+b}.b\\\frac{z}{c}=\frac{k}{a+b}\Rightarrow z=\frac{k}{a+b}.c\end{matrix}\right.\)
Vậy \(x=\frac{k}{a+b}.a;y=\frac{k}{a+b}.b;z=\frac{k}{a+b}.c\)
Chúc bạn học tốt!