Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các số tự nhiên x,y biết
X4y là số lẻ chia hết cho 9 và khi chia cho 5 dư 3
Các bạn giúp mình nha
vì x4y chia 5 dư 3 nên y=3 hoặc 8
vì x4y là số lẻ nên y=3
x+4+3 chia hết cho 9
x+7 chia hết cho 9
=>x = 2
vậy x4y = 243.
Vì a chia 24 dư 10 nên a có dạng 24k+10
Ta có:
24k+10=2.(12k)+2.5=2(12k+5) chia hết cho 2
24k+10=4(6k)+4.2+2=4(6k+2) + 2 chia 4 dư 2
Do đó a chia hết cho 2 và chia 4 dư 2.
ta có:C=1+3+32+33+...+311
=(1+3+32)+(33+...+311)
=1.(1+3+32)+...+39.(1+3+32)
=1.13+...+39.13
=(1+...+39).13 chia hết cho 13
b.C=1+3+32+33+...+311
=(1+3+32+33)+(...+311)
=1.(1+3+32+33)+(...+311)
=1.(1+3+32+33)+...+38.(1+3+32+33)
=1.40+...+38.40
=(1+...+38).40 chia hết cho 40
a chia cho 7 dư 4 nên a = 7k + 4 (k\(\in\)N)
a chia cho 9 dư 6 nên a = 9q + 6 (q\(\in\)N)
\(\Rightarrow\)a + 3 = 7k + 7 chia hết cho 7 .
a + 3 = 9q + 9 chia hết cho 9 .
Mà (7 ; 9) = 1 nên a + 3 chia hết cho 63
\(\Rightarrow\)a + 3 = 63m (m\(\in\)N)
a + 63 - 60 = 63m
a = 63m - 63 + 60
a = 63(m - 1) + 60
Vậy a chia 63 dư 60
Ta có \(31.\left(x+2y\right)=31x+2y=5.\left(6x+11y\right)+\left(x+7y\right)\)
Do 6x + 11y chia hết cho 31 nên \(5.\left(6x+11y\right)\) chia hét cho 31.
\(\Rightarrow\) x + 7y chia hết cho 31 (đpcm).
số a chia 4 dư 3 ; chia 5 dư 4 ; chia 6 dư 5 nên ( a + 1 ) chia hết cho cả 4 ; 5 và 6
ta có BSCNN của 4.5 ,6 là : 60 => các BS của 60 có dạng 60 k
vì 200 < a < 400 nên k có thể là 4 , 5 , 6 khi đó a +1 = 240 , 300 , 360
nên a = 239 ,299 , 359