K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

Lần sau ghi dấu ra xíu nhé :v

a) Đặt \(\sqrt{x}=a\Rightarrow B=\left(\dfrac{a}{a+4}+\dfrac{4}{a-4}\right):\dfrac{a^2+16}{a+2}\)

Quy đồng,rút gọn : \(B=\dfrac{a+2}{a^2-16}\Rightarrow B=\dfrac{\sqrt{x}+2}{x-16}\)

b) \(B\left(A-1\right)=\dfrac{\sqrt{x}+2}{x-16}\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)=\dfrac{2}{x-16}\)

x - 16 là ước của 2 => \(x\in\left\{14;15;17;18\right\}\)

mới làm quen toán 9 ;v có gì k rõ ae chỉ bảo nhé :))

15 tháng 6 2017

dung ko the ban, sao ngan the ?

\(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)

 

b: \(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)

 

15 tháng 3 2018

ap dung bunhiacopki

\(\left(x^4+1\right)\left(y^4+1\right)>=\left(x^2+y^2\right)^2>=\left[\frac{\left(x+y\right)^2}{2}\right]^2=4\)

do do P>=4+2013=2017

= xảy ra <=>x=y=1

Bài 1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

a) Ta có: \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

Để A>1 thì A-1>0

\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}-1>0\)

\(\Leftrightarrow\frac{\sqrt{x}-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\frac{\sqrt{x}-\sqrt{x}+2}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\frac{2}{\sqrt{x}-2}>0\)

mà 2>0

nên \(\sqrt{x}-2>0\)

\(\Leftrightarrow\sqrt{x}>2\)

hay x>4(nhận)

Vậy: Khi x>4 thì A>1

a: \(A=\left(\dfrac{6x+4}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}-\dfrac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\dfrac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)

\(=\dfrac{6x+4-3x+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\cdot\left(1-\sqrt{3x}\right)^2\)

\(=\dfrac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)

b: Để A là số nguyên thì \(3x-2\sqrt{3x}+1⋮\sqrt{3x}-2\)

=>\(\sqrt{3x}-2\in\left\{1;-1;3;-3\right\}\)

=>\(3x\in\left\{9;1;25\right\}\)

hay x=3

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).