Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: \(x^4-13x^2+36\)
\(=x^4-9x^2-4x^2+36\)
\(=\left(x^2-9\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x-2\right)\left(x+2\right)\)
4: \(x^4+3x^2-2x+3\)
\(=x^4+x^3+3x^2-x^3-x^2-3x+x^2+x+3\)
\(=\left(x^2+x+3\right)\left(x^2-x+1\right)\)
5: \(x^4+2x^3+3x^2+2x+1\)
\(=x^4+x^3+x^2+x^3+x^2+x+x^2+x+1\)
\(=\left(x^2+x+1\right)^2\)
a.
$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$
b.
$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$
c.
$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$
d.
$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$
$=(x+1)(x^2-4x+1)$
e.
$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$
$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$
f.
$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$
$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$
g.
$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$
$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$
$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$
$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$
h.
$x^6+2x^5+x^4-2x^3-2x^2+1$
$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$
$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$
\(\Leftrightarrow\left(x^4+6x^3+6x^2\right)+\left(6x^3+36x^2+36x\right)+\left(6x^2+36x+36\right)=0\)
\(\Leftrightarrow x^2\left(x^2+6x+6\right)+6x\left(x^2+6x+6\right)+6\left(x^2+6x+6\right)=0\)
\(\Leftrightarrow\left(x^2+6x+6\right)^2=0\)
\(\Leftrightarrow x^2+6x+6=0\)
\(\Rightarrow x=-3\pm\sqrt{3}\)
a: Ta có: x=31
nên x-1=30
Ta có: \(A=x^3-30x^2-31x+1\)
\(=x^3-x^2\left(x-1\right)-x^2+1\)
\(=x^3-x^3+x^2-x^2+1\)
=1
c: Ta có: x=16
nên x+1=17
Ta có: \(C=x^4-17x^3+17x^2-17x+20\)
\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+20\)
\(=20-x=4\)
d: Ta có: x=12
nên x+1=13
Ta có: \(D=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\)
\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...+x^2\left(x+1\right)-x\left(x+1\right)+10\)
\(=10-x\)
=-2
d: Ta có: x=12
nên x+1=13
Ta có: \(D=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\)
\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...+x^2\left(x+1\right)-x\left(x+1\right)+10\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+1+9\)
\(=-x+10=-2\)
a.
$x^4-25x^3=0$
$\Leftrightarrow x^3(x-25)=0$
\(\Leftrightarrow \left[\begin{matrix} x^3=0\\ x-25=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=25\end{matrix}\right.\)
b.
$(x-5)^2-(3x-2)^2=0$
$\Leftrightarrow (x-5-3x+2)(x-5+3x-2)=0$
$\Leftrightarrow (-2x-3)(4x-7)=0$
\(\Leftrightarrow \left[\begin{matrix}
-2x-3=0\\
4x-7=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix}
x=\frac{-3}{2}\\
x=\frac{7}{4}\end{matrix}\right.\)
c.
$x^3-4x^2-9x+36=0$
$\Leftrightarrow x^2(x-4)-9(x-4)=0$
$\Leftrightarrow (x-4)(x^2-9)=0$
$\Leftrightarrow (x-4)(x-3)(x+3)=0$
\(\Leftrightarrow \left[\begin{matrix} x-4=0\\ x-3=0\\ x+3=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=4\\ x=3\\ x=-3\end{matrix}\right.\)
d. ĐK: $x\neq 0$
$(-x^3+3x^2-4x):(\frac{-1}{2}x)=0$
$\Leftrightarrow x(-x^2+3x-4):(\frac{-1}{2}x)=0$
$\Leftrightarrow -2(-x^2+3x-4)=0$
$\Leftrightarrow x^2-3x+4=0$
$\Leftrightarrow (x-1,5)^2=-1,75< 0$ (vô lý)
Vậy pt vô nghiệm.
Bài 1:
a: \(11x^2-6xy-5y^2\)
\(=11x^2-11xy+5xy-5y^2\)
\(=11x\left(x-y\right)+5y\left(x-y\right)\)
\(=\left(x-y\right)\left(11x+5y\right)\)
b: \(4x^3-16x^2+19x-6\)
\(=4x^3-8x^2-8x^2+16x+3x-6\)
\(=\left(x-2\right)\left(4x^2-8x+3\right)\)
\(=\left(x-2\right)\left(2x-1\right)\left(2x-3\right)\)
Bài 1:
a: \(11x^2-6xy-5y^2\)
\(=11x^2-11xy+5xy-5y^2\)
\(=11x\left(x-y\right)+5y\left(x-y\right)\)
\(=\left(x-y\right)\left(11x+5y\right)\)
b: \(4x^3-16x^2+19x-6\)
\(=4x^3-8x^2-8x^2+16x+3x-6\)
\(=\left(x-2\right)\left(4x^2-8x+3\right)\)
\(=\left(x-2\right)\left(2x-3\right)\left(2x-1\right)\)
\(a,=11x^2-11xy+5xy-5y^2=\left(11x+5y\right)\left(x-y\right)\\ b,=4x^3-8x^2-8x^2+16x+3x-6\\ =\left(x-2\right)\left(4x^2-8x+3\right)\\ =\left(x-2\right)\left(4x^2-2x-6x+3\right)\\ =\left(x-2\right)\left(2x-1\right)\left(2x-3\right)\)
Bài 1:
a: \(11x^2-6xy-5y^2\)
\(=11x^2-11xy+5xy-5y^2\)
\(=11x\left(x-y\right)+5y\left(x-y\right)\)
\(=\left(x-y\right)\left(11x+5y\right)\)
b: \(4x^3-16x^2+19x-6\)
\(=4x^3-8x^2-8x^2+16x+3x-6\)
\(=\left(x-2\right)\left(4x^2-8x+3\right)\)
\(=\left(x-2\right)\left(2x-1\right)\left(2x-3\right)\)
Ta có x4-13x2+36=0
<=> x4-12x2+36-x2=0
<=> (x2-6)2-x=0
<=> (x2+x-6)(x2-x-6)=0
=> x2+x-6=0 hoặc x2-x-6=0
• x2+x-6=0 <=> x2-2x+3x-6=0
<=> x(x-2)+3(x-2)=0
<=> (x-2)(x+3)=0
=> x-2=0 hoặc x+3=0 => x=2 hoặc x=-3
• x2-x-6=0 <=> x2-3x+2x-6=0
<=> x(x-3)+2(x-3)=0
<=> (x-3)(x+2)=0
=> x-3=0 hoặc x+2=0 => x=3 hoặc x=-2
Vậy ...