K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

m nào

26 tháng 8 2021

đề bài là tìm a nhé

 

23 tháng 11 2018

Đáp án: B

24 tháng 8 2021

nhân 2vao pt (1) rồi cộng với pt 2 ta có:

x^2+y^2+2xy+5(x+y)=6+m

=(x+y)^2+5(x+y)=6+m

=t^2+5t=6+m

=t^2+5t-6-m

pt co nghiem duy nhat khi delta=0

tự giải =)))))))))))))))))))))))))))))))))

6 tháng 1 2021

\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\m\left(9-my\right)-3y=4\end{matrix}\right.\)(*)

(*) <=> \(9m-m^2y-3y=4\)

<=> \(-y\left(m^2+3\right)=4-9m\) 

Vì \(m^2+3\ge3\) >0 với mọi m

=> m2 + 3 khác 0

=> luôn có nghiệm y = \(\dfrac{9m-4}{m^2+3}\) với mọi m

b) Khi đó x= \(9-m.\dfrac{9m-4}{m^2+3}=\dfrac{9m^2+27-9m^2+4m}{m^2+3}=\dfrac{4m^2+27}{m^2+3}\)

Để \(x-3y=\dfrac{28}{m^2+3}-3\)

=> \(4m+27-27m+12=28-3m^2+9\)

<=> \(3m^2-3m-20m+20=0\)

<=> \(3m\left(m-1\right)-20\left(m-1\right)=0\) 

<=> \(\left(3m-20\right)\left(m-1\right)=0\)

<=> \(\left[{}\begin{matrix}m=\dfrac{20}{3}\\m=1\end{matrix}\right.\) 

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Bài 1:

Khi $m=1$ thì HPT trở thành:

\(\left\{\begin{matrix} x-2y=-1\\ 2x+y=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-4y=-2\\ 2x+y=2\end{matrix}\right.\)

\(\Rightarrow (2x+y)-(2x-4y)=2-(-2)\)

\(\Leftrightarrow 5y=4\Rightarrow y=\frac{4}{5}\)

\(x=\frac{2-y}{2}=\frac{2-\frac{4}{5}}{2}=\frac{3}{5}\)

Vậy ...........

b)

HPT \(\Leftrightarrow \left\{\begin{matrix} mx-2y=m-2\\ y=m+1-2x\end{matrix}\right.\Rightarrow mx-2(m+1-2x)=m-2\)

\(\Leftrightarrow x(m+4)=3m(*)\)

Để HPT ban đầu có bộ nghiệm (x,y) duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất. Điều này xảy ra khi $m+4\neq 0$ hay $m\neq -4$

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Bài 2:
a)

Khi $m=2$ thì hệ trở thành:
\(\left\{\begin{matrix} x+2y=1\\ 2x+y=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x+4y=2\\ 2x+y=1\end{matrix}\right.\)

\(\Rightarrow (2x+4y)-(2x+y)=2-1\)

\(\Leftrightarrow 3y=1\Rightarrow y=\frac{1}{3}\)

Khi đó: \(x=1-2y=1-2.\frac{1}{3}=\frac{1}{3}\)

Vậy HPT có bộ nghiệm duy nhất $(x,y)=(\frac{1}{3}, \frac{1}{3})$

b)

HPT \(\Leftrightarrow \left\{\begin{matrix} x=1-my\\ mx+y=1\end{matrix}\right.\Rightarrow m(1-my)+y=1\)

\(\Leftrightarrow y(1-m^2)=1-m(*)\)

Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ cũng phải có nghiệm duy nhất. Điều này xảy ra khi \(1-m^2\neq 0\Leftrightarrow m\neq \pm 1\)

Khi đó:
\(y=\frac{1-m}{1-m^2}=\frac{1}{1+m}\)

\(x=1-my=1-\frac{m}{m+1}=\frac{1}{m+1}\)

Vậy HPT có nghiệm \((x,y)=(\frac{1}{m+1}, \frac{1}{m+1})\)

Để \(x,y>0\Leftrightarrow \frac{1}{m+1}>0\Leftrightarrow m>-1\)

Kết hợp những điều vừa tìm được suy ra $m>-1$ và $m\neq 1$ thì thỏa mãn.

NV
16 tháng 12 2020

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

16 tháng 12 2020

giải thích cho em bài 1 cái đoạn TH1,TH2 với ạ