K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016
Bạn có thể ghi đề rõ hơn được không nhìn cái đề mình đọc không hiểu
7 tháng 8 2016

Ta có ; \(A=\frac{3x^2-2x-1}{\left(x+1\right)^2}\) .Đặt \(y=x+1\Rightarrow x=y-1\), thay vào A :

\(A=\frac{3\left(y-1\right)^2-2\left(y-1\right)-1}{y^2}=\frac{3y^2-8y+4}{y^2}=\frac{4}{y^2}-\frac{8}{y}+3\)

Lại đặt \(t=\frac{1}{y}\)\(A=4t^2-8t+3=4\left(t^2-2t+1\right)-1=4\left(t-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi t = 1 <=> y = 1 <=> x = 0

Vậy A đạt giá trị nhỏ nhất bằng -1 khi x = 0 

12 tháng 5 2023

pt hoành độ giao điểm của (p) và (d) là: 

x2= 2(m+1)x -3m+2 ⇔ x-2(m+1)x +3m-2 =0(1)

a/ Thay m=3 vào pt (1) ta được: x2-8x+7=0(1')

pt (1') có: a+b+c=1-8+7=0

⇒x1=1; x2=\(\dfrac{c}{a}\)=7.

b/ pt (1) có:

Δ'= [-(m+1)]2- (3m-2)

= m2+2m+1-3m+2

=m2-m+3

=[(m-2.\(\dfrac{1}{2}\).m+\(\dfrac{1}{4}\))-\(\dfrac{1}{4}\)+3]

=(m-\(\dfrac{1}{2}\))2+\(\dfrac{11}{4}\)\(\dfrac{11}{4}\)>0 với mọi m

⇒pt(1)luôn có hai nghiệm phân biệt với mọi m

⇒(p) và (d) luôn cắt nhau tại hai điểm phân biệt với mọi m

 

 

17 tháng 5 2023

Cảm ơn bạn nhưng mình học qua cái đấy rồi.

12 tháng 5 2016

cái pt thứ 2 bạn nhân 2 vế vs x

Sau đó chuyển hết sang 1 vế,,,dùng máy băm nghiệm

12 tháng 5 2016

x4+x3-6x3-6x2+6x2+6x+4x+4=0

15 tháng 12 2019

\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)+8}{2\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{2\sqrt{x}-1}+\frac{8}{2\sqrt{x}-1}=\sqrt{x}+\frac{8}{2\sqrt{x}-1}\)

Áp dụng BĐT Cô Si cho 2 số dương \(\sqrt{x}\)và \(\frac{8}{2\sqrt{x}-1}\)ta có :

\(\sqrt{x}+\frac{8}{2\sqrt{x}-1}\ge2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)

\(\Rightarrow A_{min}\)\(\Leftrightarrow2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)nhỏ nhất \(\Rightarrow x=0\)

Vậy \(A=0\)\(\Leftrightarrow\sqrt{x}=\frac{8}{2\sqrt{x}-1}\)( tự tính nha ) 

15 tháng 12 2019

Phạm Thị Thùy Linh đây nhé 

\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{1}{2}\left(2\sqrt{x}-1+\frac{16}{2\sqrt{x}-1}\right)+\frac{1}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra khi \(x=\frac{25}{4}\)