K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

\(x^2-xy+yx+y^2\)

=\(x^2+y^2\)

8 tháng 9 2023

a) x(x² + x) + x(x + 1)

= x²(x + 1) + x(x + 1)

= (x + 1)(x² + x)

= x(x + 1)² ⋮ (x + 1)

b) xy² - yx² + xy

= xy(y - x + 1) ⋮ xy

Bài 2:

a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-14x=-4\)

hay \(x=\dfrac{2}{7}\)

b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)

\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)

\(\Leftrightarrow x^3=-8\)

hay x=-2

Bài 1: 

a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)

\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)

\(=xy\)

=1

b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)

\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)

\(=x^2-y^2\)

\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)

2 tháng 12 2017

a, \(\dfrac{xy^3-yx^3}{x^2-xy}\)

= \(\dfrac{xy\left(y^2-x^2\right)}{x\left(x-y\right)}\)

= \(\dfrac{xy\left(y-x\right)\left(y+x\right)}{-x\left(y-x\right)}\)

= - y(x + y)

= -xy + y2

b, \(\dfrac{y\left(2x-x^2\right)}{x\left(2y+y^2\right)}\)

= \(\dfrac{xy\left(2-x\right)}{xy\left(2+y\right)}\)

= \(\dfrac{2-x}{2+y}\)

13 tháng 9 2023

Bài 2: a) Để tính giá trị của A = 5x(x^2-3) + x^2(7-5x) - 7x tại x = -3, ta thay x = -3 vào biểu thức và tính toán: A = 5(-3)((-3)^2-3) + (-3)^2(7-5(-3)) - 7(-3) = 5(-3)(9-3) + 9(7+15) + 21 = -15(6) + 9(22) + 21 = -90 + 198 + 21 = 129

Vậy giá trị của A tại x = -3 là 129.

Bài 3: a) Để rút gọn và tính giá trị của biểu thức c = 5x^2-3x(x+2), ta thay x = -3 vào biểu thức và tính toán: c = 5(-3)^2 - 3(-3)(-3+2) = 5(9) - 3(9)(-1) = 45 - 27 = 18

Vậy giá trị của c tại x = -3 là 18.

b) Để rút gọn và tính giá trị của biểu thức b = 3x^2y(2x^2-y) - 4x^2(4x^2-y^2), ta thay x = -3 và y = -2 vào biểu thức và tính toán: b = 3(-3)^2(-2)(2(-3)^2-(-2)) - 4(-3)^2(4(-3)^2-(-2)^2) = 3(9)(-2)(2(9)-2) - 4(9)(4(9)-4) = -54(18-2) - 36(36-4) = -54(16) - 36(32) = -864 - 1152 = -2016

Vậy giá trị của b tại x = -3 và y = -2 là -2016.

c) Để rút gọn và tính giá trị của biểu thức c = xy^2(x-xy) - x(x=y) + yx(2x^2-2xy), ta thay x = -3 và y = -2 vào biểu thức và tính toán: c = (-3)(-2)^2((-3)-(-3)(-2)) - (-3)(x=(-3)) + (-2)(-3)(2(-3)^2-2(-3)(-2)) = (-3)(4)(-3+6) - (-3)(x=(-3)) + (-2)(-3)(18-12) = (-3)(4)(3) - (-3)(x=(-3)) + (-2)(-3)(6) = (-12)(3) + (-3)(-3) + (-2)(-3)(6) = -36 + 9 + 36 = 9

Vậy giá trị của c tại x = -3 và y = -2 là 9.

2:

a: \(A=5x^3-15x+7x^2-5x^3-7x=7x^2-22x\)

Khi x=-3 thì A=7(-3)^2+22*3

=63+66

=129

b: \(B=x^4-x^2y^2+x^2y^2+y^4=x^4+y^4\)

Khi x=-3 và y=-2 thì B=(-3)^4+(-2)^4

=81+16

=97

 

NV
5 tháng 1

\(2x^2+2y^2\ge4xy\)

\(4x^2+z^2\ge4xz\)

\(4y^2+z^2\ge4yz\)

Cộng vế:

\(2\left(3x^2+3y^2+z^2\right)\ge4\left(xy+yz+zx\right)\ge20\)

\(\Rightarrow3x^2+3y^2+z^2\ge10\)

Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(1;1;2\right);\left(-1;-1;-2\right)\)