Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-4x+y^2-6x+15=2\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6x+9\right)-4-9+15-2=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Lại có :
\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) \(\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow x=2;y=3\)
đến h vẫn còn ôn thi à
\(x^2-4x+y^2-6y+15=2\)
\(< =>\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)
\(< =>\left(x-2\right)^2+\left(y-3\right)^2=0\)
Do \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(=>\left(x-2\right)^2+\left(y-3\right)^2\ge0\)
Dấu "=" xảy ra \(< =>\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Có biểu tượng $\sum$ hỗ trợ viết công thức toán. Lần sau bạn lưu ý sử dụng, không viết công thức kiểu như trên bài.
Lời giải:
$x^2+y^2-4x+6y+15=(x^2-4x+4)+(y^2+6y+9)+2$
$=(x-2)^2+(y+3)^2+2$
$\geq 0+0+2=2$
Vậy gtnn của biểu thức là $2$. Giá trị này đạt tại $x-2=y+3=0$
$\Leftrightarrow x=2; y=-3$
Ta có: \(x^2+y^2-4x+6y+15\)
\(=x^2-4x+4+y^2+6y+9+2\)
\(=\left(x-2\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=-3
\(x^2-4x+y^2-6y+15=0\)
\(\Rightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+2=0\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2=-2\)
Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\forall x;y\)
mà \(\left(x-2\right)^2+\left(y-3\right)^2=-2\)
\(\Rightarrow\)Phương trình vô nghiệm.
\(x^2-4x+y^2-6y+15=0\)
\(\Leftrightarrow x^2-4x+4+y^2-6y+9+2=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+2=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2+2=0\)
Mà:
\(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2+2\ge2\forall x,y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2+2=0\) (vô lý)
⇒ Phương trình vô nghiệm:
\(x\in\varnothing\)
=>x^2-4x+4+y^2-6y+9=0
=>(x-2)^2+(y-3)^2=0
=>x=2 và y=3
special thing ican pial on the raint day, they can say (x2) we all crazy. dhcuihcue8uf89efefidjmcdc kf h fhv8y8gyu8r9gynw98yfnryfudfhsjcndskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkskuihhhhuhmillion dream we gona makenduxcjsdfbc dfgvefvg efhvbidhccccccccccccccccccbjhsdbcshb hjcb snkz .
answer= foethe www
\(x^2-4x+y^2-6y+15=2\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-9y+9\right)+2=2\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Vì \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)
Mà \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy (x;y) = (2;3)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Do \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-2=0\\y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
\(\Leftrightarrow x^2-4x+4+y^2-6y+9+2=2\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Dấu '=' xảy ra khi x=2 và y=3
x2−4x+y2−6x+15=2x2−4x+y2−6x+15=2
⇔(x2−4x+4)+(y2−6x+9)−4−9+15−2=0⇔(x2−4x+4)+(y2−6x+9)−4−9+15−2=0
⇔(x−2)2+(y−3)2=0⇔(x−2)2+(y−3)2=0
Lại có :
{(x−2)2≥0(y−3)2≥0{(x−2)2≥0(y−3)2≥0 ∀x,y∀x,y
Dấu "=" xảy ra ⇔x=2;y=3