Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
>: đang làm, nghịch ngu nhấn lung tung....h làm lại T.T
\(A=\left|x+1\right|+\left|2x+5\right|\ge\left|x+1+2x+5\right|=\left|3x+6\right|\)
Dấu = xảy ra khi \(\left(x+1\right).\left(2x+5\right)\ge0\)
\(\Rightarrow-\frac{5}{2}\le x\le-1\)
\(\left|3x+6\right|+\left|3x+8\right|=\left|-3x-6\right|+\left|3x+8\right|\ge\left|-3x-6+3x+8\right|=2\)
dấu = xảy ra khi \(\left(-3x-6\right).\left(3x+8\right)\ge0\)
\(\Rightarrow-\frac{8}{3}\le x\le-2\)
\(A\ge2\Leftrightarrow-\frac{8}{3}\le x\le-2\)
Vậy...
\(\left(x^2-3\right)\cdot\left(x^2+2\right)\)
= \(x^4-3x^2+2x^2-6\)
= \(x^4-x^2-6\)
Vì \(x^4\ge0,x^2\ge0\) và \(x^4\ge x^2\)
=> x^4 - x^2 \(\ge\) 0
=> x^4 - x^2 - 6 \(\ge\) -6
Dấu " = " xảy ra khi x^4 = 0 và x^2 = 0
=> x = 0
Vậy MinA = -6 khi x = 0 (gọi đây là biểu thức A)
Lời giải:
1.
$4x+9=0$
$4x=-9$
$x=\frac{-9}{4}$
2.
$-5x+6=0$
$-5x=-6$
$x=\frac{6}{5}$
3.
$x^2-1=0$
$x^2=1=1^2=(-1)^2$
$x=\pm 1$
4.
$x^2-9=0$
$x^2=9=3^2=(-3)^2$
$x=\pm 3$
5.
$x^2-x=0$
$x(x-1)=0$
$x=0$ hoặc $x-1=0$
$x=0$ hoặc $x=1$
6.
$x^2-2x=0$
$x(x-2)=0$
$x=0$ hoặc $x-2=0$
$x=0$ hoặc $x=2$
7.
$x^2-3x=0$
$x(x-3)=0$
$x=0$ hoặc $x-3=0$
$x=0$ hoặc $x=3$
8.
$3x^2-4x=0$
$x(3x-4)=0$
$x=0$ hoặc $3x-4=0$
$x=0$ hoặc $x=\frac{4}{3}$
\(P=3x^2+x-2=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{9}\right)-\dfrac{5}{3}=3\left(x+\dfrac{1}{3}\right)^2-\dfrac{5}{3}\\ Vì:\left(x+\dfrac{1}{3}\right)^2\ge0\forall x\in R\\ Vậy:3\left(x+\dfrac{1}{3}\right)^2-\dfrac{5}{3}\ge\dfrac{5}{3}\forall x\in R\\ Vậy:min_P=\dfrac{5}{3}.khi.x=-\dfrac{1}{3}\)
Cách kia hơi lằng nhằng.
Làm lại:
\(\left(-\frac{3}{4}\right)^{3x-1}=\frac{256}{81}=\left(-\frac{3}{4}\right)^{-4}\)
\(\Rightarrow3x-1=-4\)
\(\Rightarrow3x=-3\)
\(\Rightarrow x=-1\)
Ta có : \(\left(-\frac{3}{4}\right)^{-4}=\frac{256}{81}\)
do đó 3x - 1 = -4
=> 3x = -4 + 1 = -3
=> x = -3 : 3 = -1
a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11
Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5
Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5
b ) Vì (3x - 1)2 ≥ 0
Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3
=> max |3x - 1| - (3x - 1)2 = 0 tại x = 1/3
a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11
Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5
Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5
b ) Vì (3x - 1)2 ≥ 0
Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3
=> max |3x - 1| - (3x - 1)2 = 0 tại x = 1/3
mk tìm min bn h nha, chịu k?
thôi bn k h mk cũng làm;
= x2 - 2,3x/16 + (3/16)2 - 9/256 + 503/256
=(x+3/16)2 + 494/256
min = 494/256