Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x + 1 )30 + ( y + 2 )4 + ( z - 3 )2020 = 0 (*)
Ta có ( x + 1 )30 ≥ 0 ∀ x
( y + 2 )4 ≥ 0 ∀ y
( z - 3 )2020 ≥ 0 ∀ z
=> ( x + 1 )30 + ( y + 2 )4 + ( z - 3 )2020 ≥ 0 ∀ x, y, z
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x+1=0\\y+2=0\\z-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\\z=3\end{cases}}\)
Vậy x = -1 ; y = -2 ; z = 3
Ta có ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 = 0
Vì ( x - 3 )2 ≥ 0 với ∀x
( y - 4 )2 ≥ 0 với ∀y
( x2 - xz )2020 ≥ 0 với ∀x; ∀z
⇒ ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 ≥ 0
Dấu " = " xảy ra khi
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-4\right)^2=0\\\left(x^2-xz\right)^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\y-4=0\\x^2-xz=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=3\end{matrix}\right.\)
Vậy x = 3; y = 4; z = 3
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
Ta có: \(\left(x-\frac{1}{5}\right)^{2020}\ge0\forall x\)
\(\left(y+0.4\right)^{2000}\ge0\forall y\)
\(\left(z-3\right)^6\ge0\forall z\)
=> \(\left(x-\frac{1}{5}\right)^{2020}+\left(y+0.4\right)^{2000}+\left(z-3\right)^6\ge0\forall x,y,z\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-\frac{1}{5}=0\\y+0.4=0\\z-3=0\end{cases}}\) => \(\hept{\begin{cases}x=\frac{1}{5}\\y=0\\z=3\end{cases}}\)
vậy ...
Ta có: \(\left|x-1\right|+\left|x-2020\right|=\left|x-1\right|+\left|2020-x\right|\ge\left|x-1+2020-x\right|=2019\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(2020-x\right)\ge0\)\(\Leftrightarrow1\le x\le2020\)
Vì \(\hept{\begin{cases}\left|x-30\right|\ge0\\\left|y-4\right|\ge0\\\left|z-1975\right|\ge0\end{cases}}\forall x,y,z\)\(\Rightarrow\left|x-1\right|+\left|x-30\right|+\left|y-4\right|+\left|z-1975\right|+\left|x-2020\right|\ge2019\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-30=0\\y-4=0\\z-1975=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=30\\y=4\\z=1975\end{cases}}\)
So sánh \(x=30\)với điều kiện \(1\le x\le2020\)ta được x thoả mãn
Vậy \(x=30\); \(y=4\); \(z=1975\)
Ta có : \(\hept{\begin{cases}\left(x+1\right)^{30}\ge0\forall x\\\left(y+2\right)^4\ge0\forall y\\\left(z-3\right)^{2020}\ge0\forall z\end{cases}}\Rightarrow\left(x+1\right)^{30}+\left(y+2\right)^4+\left(z-3\right)^{2020}\ge0\forall x;y;z\)
Mà theo đề bài (x + 1)30 + (y + 2)4 + (z - 3)2020 = 0
=> Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+1=0\\y+2=0\\z-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-2\\z=3\end{cases}}\)
Vậy x = - 1 ; y = -2 ; z = 3
( x + 1 )30 + ( y + 2 )4 + ( z - 3 )2020 = 0 (*)
Ta có \(\hept{\begin{cases}\left(x+1\right)^{30}\ge0\forall x\\\left(y+2\right)^4\ge0\forall y\\\left(z-3\right)^{2020}\ge0\forall z\end{cases}}\Rightarrow\left(x+1\right)^{30}+\left(y+2\right)^4+\left(z-3\right)^{2020}\ge0\forall x,y,z\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x+1=0\\y+2=0\\z-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-2\\z=3\end{cases}}\)
Vậy ...