Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ban dung phuong phap the ban cho x= 1 di roi the vao ta duoc so du la 0 roi the tiep x=x+1=1+1=2 tiep tuc duoc du =0 vay =>>>>>voi moi x thi dc so du luon bang 0
Ta xét:
1. Nếu \(x=2015\) hoặc \(x=2016\) thì thỏa mãn đề bài
2. Nếu \(x< 2015\) thì \(\hept{\begin{cases}\left|x-2015\right|^{2015}>0\\\left|x-2016\right|^{2016}>1\end{cases}}\)
\(\Leftrightarrow\left|x-2015\right|^{2015}+\left|x-2016\right|^{2016}>0+1=1\) (vô nghiệm)
3. Nếu \(x>2016\) thì \(\hept{\begin{cases}\left|x-2015\right|^{2015}>1\\\left|x-2016\right|^{2016}>0\end{cases}}\)
\(\Leftrightarrow\left|x-2015\right|^{2015}+\left|x-2016\right|^{2016}>1+0=1\) (vô nghiệm)
Vậy phương trình có 2 nghiệm là \(\left(2015;2016\right)\)
*)Xét x < 2015
=> |x - 2016| > 1 <=> |x - 2016|2016 > 1
=> x < 2015 không là nghiệm của pt
**)Xét x > 2016
=> |x - 2015| > 1 <=> |x - 2015|2015 > 1
=> x > 2016 không là nghiệm của pt
***) Xét 2015 < x < 2016
=> 0 < |x - 2015| < 1 (1)
0 < |x - 2016| = |2016 - x|< 1 (2)
=> |x - 2015| + |x - 2016| = |x - 2015| + |2016 - x| = x - 2015 + 2016 - x = 1
Mà: |x - 2015| > |x - 2015|2015 (theo (1)) và |x - 2016| > |x - 2016|2016 (theo (2))
=> |x - 2015|2015 + |x - 2016|2016 < |x - 2015| + |x - 2016| = 1
Vậy phương trình chỉ có 2 nghiệm là x1 = 2015 và x2 = 2016
\(B=\frac{2x^2-2}{x^3+x^2-x-1}=\frac{2\left(x-1\right)\left(x+1\right)}{x^2\left(x+1\right)-\left(x+1\right)}=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^2}\)
\(ĐKXĐ:x\ne\pm1\)(1)
\(\)\(B=\frac{2}{x+1}\)
Để B thuộc Z => \(2⋮x+1\left(x\in Z\right)\)
\(\Rightarrow\left(x+1\right)\inƯ\left(2\right)=\left(1;-1;2;-2\right)\)
\(\Rightarrow x\in\left(0;-2;1;-3\right)\)(2)
từ (1) và (2)
\(\Rightarrow x\in\left(0;-2;-3\right)\)
x3 + x = 0
=> x3 = 0 hoặc x = 0
* x = 0 => x = 0
* x3 = 0 => x = 0
Vậy x = 0
=>x-9>0 hoặc x-3<0
=>x<3 hoặc x>9
cụ thể hơn được ko bạn mình chưa hiều lắm