Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}2,5-x=a\\x-1,5=b\end{matrix}\right.\).
Ta có hpt \(\left\{{}\begin{matrix}a+b=1\left(1\right)\\a^4+b^4=1\end{matrix}\right.\).
Do \(a^4,b^4\le1\Rightarrow-1\le a,b\le1\). (*)
Kết hợp với (1) ta có \(0\le a,b\le1\).
\(\Rightarrow\left\{{}\begin{matrix}a\ge a^4\\b\ge b^4\end{matrix}\right.\).
Do đó \(a+b\ge a^4+b^4\Rightarrow a+b\ge1\).
Theo (1) thì đẳng thức phải xảy ra, kết hợp với (*) ta có \(\left[{}\begin{matrix}a=0;b=1\\a=1;b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2,5\\x=1,5\end{matrix}\right.\).
Vậy...
bỏ mũ 4
(x-2,5)+(x-1,5)=1
(x-5/2)+(x-3/2)=1
[x+(-5/2]+[x+(-3/2]=1
x^2+[(-5/2)+(-3/2)]=1
x^2+(-4)=1
X^2=1-(-4)
x^2=5
x^2=2,5^2
vậy x=2,5
câu a:
Đặt \(x-1=a\)thì pt trở thành \(\left(a+2\right)^4+\left(a-2\right)^4=82\), phá ra rồi giải pt tích
Vì (x-2,5)4 \(\ge\) 0 và (x-1,5)4 \(\ge\) 0 nên để (x-2,5)4+ (x-1,5)4 = 1 thì:
TH1: \(\left\{{}\begin{matrix}\left(x-2.5\right)^4=1\\\left(x-1.5\right)^4=0\end{matrix}\right.\Leftrightarrow x=1.5\)
TH2: \(\left\{{}\begin{matrix}\left(x-1.5\right)^4=1\\\left(x-2.5\right)^4=0\end{matrix}\right.\Leftrightarrow x=2.5\)
Vậy x = 1.5 và x = 2.5
a) (x+3)4+(x+5)4=16
<=>(x+3)4+(x+5)4=04+24
TH1: \(\left\{{}\begin{matrix}x+3=0\\x+5=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-3\end{matrix}\right.\Leftrightarrow x=-3\)
TH2:\(\left\{{}\begin{matrix}x+3=2\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)(loại)
b)(x-2)4+(x-3)4=1=04+14
TH1: \(\left\{{}\begin{matrix}x-2=0\\x-3=1\end{matrix}\right.\)loại
TH2: \(\left\{{}\begin{matrix}x-2=1\\x-3=0\end{matrix}\right.\)=>x=3.
c)(x+1)4+(x-3)4=82=34+(-1)4
làm tương tự => x=2.
d) làm tương tự câu b
\(x:4\dfrac{1}{3}=-2,5\)
\(\Leftrightarrow x:\dfrac{13}{3}=-2,5\)
\(\Leftrightarrow x=-2,5.\dfrac{13}{3}\)
\(\Leftrightarrow x=-\dfrac{65}{6}\)
x=2,5 hoặc x=1,5 nhé!