Với x,y,z > 0 và x + y + z = 1/2. Tìm max của: \(P=\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2023

Xét A= \(\dfrac{x}{\sqrt{x+2yz}}\).\(\dfrac{1}{\sqrt{2}}\)=\(\dfrac{x}{\sqrt{2x+4yz}}\)=\(\sqrt{\dfrac{x.x}{2x+4yz}}\)

ta có x+y+z=\(\dfrac{1}{2}\)=> 2x+2y+2z= 1=> 2x+4yz= 4yz+1-2y-2z=(2y-1)(2z-1)
từ đó A= \(\sqrt{\dfrac{x}{2y-1}.\dfrac{x}{2z-1}}\)=\(\sqrt{\dfrac{x}{2y-2x-2y-2z}.\dfrac{x}{2z-2x-2y-2z}}\)
=\(\sqrt{\dfrac{x}{-2\left(x+y\right)}\dfrac{x}{-2\left(x+z\right)}}\)=\(\sqrt{\dfrac{1}{4}.\dfrac{x}{x+z}.\dfrac{x}{x+y}}\)=\(\dfrac{1}{2}\sqrt{\dfrac{x}{x+y}.\dfrac{x}{x+z}}\)
Áp dụng cô si  \(\sqrt{ab}\)\(\dfrac{a+b}{2}\) =>\(\dfrac{1}{2}\sqrt{ab}\)\(\dfrac{a+b}{4}\)ta được
A≤\(\dfrac{1}{4}\).(\(\dfrac{x}{x+y}\)+\(\dfrac{x}{x+z}\))
cmmt thì \(\dfrac{P}{\sqrt{2}}\)≤ \(\dfrac{1}{4}\).\(\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{y+x}+\dfrac{y}{y+z}+\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)\)
               \(\dfrac{P}{\sqrt{2}}\)\(\dfrac{3}{4}\)=>P≤\(\dfrac{3.\sqrt{2}}{4}\)=\(\dfrac{3}{2\sqrt{2}}\)
Dấu"=" xảy ra <=> x=y=z=\(\dfrac{1}{6}\)

10 tháng 12 2017

ÁP dụng bất đẳng thức AM-GM ta có:

\(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}\)\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu "=" xảy ra\(\Leftrightarrow x=y=z>0\)

Vậy \(MinP=1\Leftrightarrow x=y=z>0\)

Ta có :

\(x+y+z=1\)

\(\Rightarrow\left(x+y+z\right)^2=1\)

Áp dụng BĐT Cauchy-schwar dưới dạng engel ta có :

\(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\ge\dfrac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\dfrac{9}{1}=9\)

4 tháng 5 2018

\(\text{Ta có : }x+y+z=1\\ \Rightarrow\left(x+y+z\right)^2=1\\ \Rightarrow x^2+y^2+z^2+2xy+2xz+2yz=1\\ \Rightarrow\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\\ =\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{x^2+2yz}+\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{y^2+2xz}+\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{z^2+2xy}\\ =\dfrac{x^2+2yz}{x^2+2yz}+\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}+\dfrac{y^2+2xz}{y^2+2xz}+\dfrac{z^2+2xy}{y^2+2xz}+\dfrac{x^2+2yz}{z^2+2xy}+\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{z^2+2xy}\\ =1+\left(\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}\right)+\left(\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{z^2+2xy}\right)+1+\left(\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{y^2+2xz}\right)+1\)Áp dụng \(BDT:\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

\(\Rightarrow1+\left(\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}\right)+\left(\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{z^2+2xy}\right)+1+\left(\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{y^2+2xz}\right)+1\\ \ge1+2+2+1+2+1\ge9\left(đpcm\right)\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}y^2+2xz=x^2+2yz\\z^2+2xy=x^2+2yz\\y^2+2xz=z^2+2xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2-2yz=x^2-2xz\\z^2-2yz=x^2-2xy\\y^2-2xy=z^2-2xz\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y^2-2yx+z^2=x^2-2xz+z^2\\z^2-2yz+y^2=x^2-2xy+y^2\\y^2-2xy+x^2=z^2-2xz+x^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(y-z\right)^2=\left(x-z\right)^2\\\left(z-y\right)^2=\left(x-y\right)^2\\\left(y-x\right)^2=\left(z-x\right)^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y-z=x-z\\z-y=x-y\\y-x=z-x\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\z=x\\y=z\end{matrix}\right.\Leftrightarrow x=y=z\\\text{Mà } x+y+z=1\\ \Leftrightarrow3x=1\\ \Leftrightarrow x=\dfrac{1}{3}\\ \Leftrightarrow x=y=z=\dfrac{1}{3}\)

Vậy \(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\ge9\) với \(x;y;z>0\)\(x+y+z=1\)

đẳng thức xảy ra khi : \(x=y=z=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
24 tháng 4 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\right)(x^2+2yz+y^2+2xz+z^2+2xy)\geq (x+y+z)^2\)

\(\Leftrightarrow P(x+y+z)^2\geq (x+y+z)^2\)

\(\Rightarrow P\geq 1\)

Vậy \(P_{\min}=1\)

Dấu bằng xảy ra khi \(x=y=z\)

25 tháng 4 2018

\(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\)

Áp dụng BDT Cô-si : \(a^2+b^2\ge2ab\)

\(\Rightarrow\left\{{}\begin{matrix}y^2+z^2\ge2yz\\x^2+z^2\ge2xz\\x^2+y^2\ge2xy\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2\ge x^2+2yz>0\\x^2+y^2+z^2\ge y^2+2xz>0\\x^2+y^2+z^2\ge z^2+2xy>0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{x^2+y^2+z^2}\le\dfrac{x^2}{x^2+2yz}\\\dfrac{y^2}{x^2+y^2+z^2}\le\dfrac{y^2}{y^2+2xz}\\\dfrac{z^2}{x^2+y^2+z^2}\le\dfrac{z^2}{z^2+2xy}\end{matrix}\right.\\ \Rightarrow P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\\ \ge\dfrac{x^2}{x^2+y^2+z^2}+\dfrac{y^2}{x^2+y^2+z^2}+\dfrac{z^2}{x^2+y^2+z^2}\\ \ge\dfrac{x^2+y^2+z^2}{x^2+y^2+z^2}\ge1\forall x;y;z\)

Dấu "=" xảy ra khi \(:\left\{{}\begin{matrix}y=z\\x=z\\x=y\end{matrix}\right.\Leftrightarrow x=y=z\)

Vậy \(P_{Min}=1\) khi \(x=y=z\)

Áp dụng Bất đẳng thức: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (Tự chứng minh)

\(\Rightarrow C=\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{3^2}=1\)Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

NV
29 tháng 6 2020

\(C=\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{3^2}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\)

13 tháng 3 2017

@phynit em hiểu nguyên tắc đó. cái em càng không hiểu là các bạn bấm chọn. trong khi cái bước rất quan trọng thì đang bỏ lửng

Em suy nghĩ rất nhiều nhiều về cái đề này. không làm nổi-->theo dõi -->

13 tháng 3 2017

A sẽ giải thích tại sao đặt được nhân tử vậy cho nhé

Ta có:

\(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)

\(=xy\left(x-y\right)+y^2z-z^2y+z^2x-zx^2\)

\(=xy\left(x-y\right)+\left(y^2z-zx^2\right)+\left(z^2x-z^2y\right)\)

\(=\left(x-y\right)\left(xy-zx-zy+z^2\right)\)

\(=\left(x-y\right)\left(\left(xy-zx\right)+\left(z^2-zy\right)\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

Cậu ta làm sai thì làm sao ngonhuminh với thầy phynit hiểu được

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 1:
Vì $x+y+z=1$ nên:

\(Q=\frac{x}{x+\sqrt{x(x+y+z)+yz}}+\frac{y}{y+\sqrt{y(x+y+z)+xz}}+\frac{z}{z+\sqrt{z(x+y+z)+xy}}\)

\(Q=\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(y+z)(y+x)}}+\frac{z}{z+\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x+y)(x+z)}=\sqrt{(x+y)(z+x)}\geq \sqrt{(\sqrt{xz}+\sqrt{xy})^2}=\sqrt{xz}+\sqrt{xy}\)

\(\Rightarrow \frac{x}{x+\sqrt{(x+y)(x+z)}}\leq \frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(Q\leq \frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Vậy $Q$ max bằng $1$

Dấu bằng xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 2:
Vì $x+y+z=1$ nên:

\(\text{VT}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\text{VT}=\frac{(x+y+z)^2-x^2}{(x+y)(x+z)}+\frac{(x+y+z)^2-y^2}{(y+z)(y+x)}+\frac{(x+y+z)^2-z^2}{(z+x)(z+y)}\)

\(\text{VT}=\frac{(y+z)[(x+y)+(x+z)]}{(x+y)(x+z)}+\frac{(x+z)[(y+z)+(y+x)]}{(y+z)(y+x)}+\frac{(x+y)[(z+x)+(z+y)]}{(z+x)(z+y)}\)

Áp dụng BĐT AM-GM:
\(\text{VT}\geq \frac{2(y+z)\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}+\frac{2(x+z)\sqrt{(y+z)(y+x)}}{(y+z)(y+x)}+\frac{2(x+y)\sqrt{(z+x)(z+y)}}{(z+x)(z+y)}\)

\(\Leftrightarrow \text{VT}\geq 2\underbrace{\left(\frac{y+z}{\sqrt{(x+y)(x+z)}}+\frac{x+z}{\sqrt{(y+z)(y+x)}}+\frac{x+y}{\sqrt{(z+x)(z+y)}}\right)}_{M}\)

Tiếp tục AM-GM cho 3 số trong ngoặc lớn, suy ra \(M\geq 3\)

Do đó: \(\text{VT}\geq 2.3=6\) (đpcm)

Dấu bằng xảy ra khi $3x=3y=3z=1$

15 tháng 4 2018

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Leftrightarrow yz+zx+xy=0\)

\(\Leftrightarrow\left[{}\begin{matrix}yz=-zx-xy\\zx=-xy-yz\\xy=-yz-zx\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{x^2+2yz}=\dfrac{1}{x^2-xz-xy+yz}=\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)

CMTT\(\Rightarrow\dfrac{1}{y^2+2zx}=\dfrac{1}{\left(y-z\right)\left(y-x\right)}\)

\(\dfrac{1}{z^2+2xy}=\dfrac{1}{\left(z-x\right)\left(z-y\right)}\)

\(\Rightarrow A=\dfrac{1}{\left(x-y\right)\left(x-z\right)}+\dfrac{1}{\left(y-z\right)\left(y-x\right)}+\dfrac{1}{\left(z-x\right)\left(z-y\right)}\)

\(A=\dfrac{y-z}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\dfrac{z-x}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\dfrac{x-y}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{y-z+z-x+x-y}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=0\left(đpcm\right)\)

13 tháng 3 2017

dài đấy

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ < =>xy+yz+xz=0\\ < =>\left\{{}\begin{matrix}xy=-yz-xz\\yz=-xy-xz\\xz=-xy-yz\end{matrix}\right.\)

\(\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

cmtt

\(=>\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

A = ...

= \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\)

=\(\dfrac{yz+xz+xy}{\left(x-y\right)\left(x-z\right)}\left(1\right)\)

mà xy + yz + xz = 0

=> (1) = 0

=> a = 0

10 tháng 1 2018

Pạn tham khảo cách làm nha!!!

Rút gọn phân thức

Chúc pạn hok tốt!!!